首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the use of 1H-NMR spectroscopy and a statistical approach to the analysis of biodiesel concentrations in blends with conventional diesel is described. For this, we performed 1H-NMR analyses using distinct mixtures of biodiesel from soybean and castor oil in mineral diesel, in concentrations ranging from 0.5 to 30%, and then we applied partial least squares regression (PLS) and principal components regression (PCR) to such data. So, six models were designed and they were evaluated through statistical parameters and through the analysis of four samples prepared in the laboratory. Briefly, a PLS model, obtained through the selection of aromatic, aliphatic and methoxy spectral regions, was quite suitable for the prediction of biodiesel concentrations greater than 2.0%. Deviations of real and predicted values were found to B2 commercial blends, indicating that this model can only be applied to blends exceeding a 2.0% level of biodiesel in petroleum diesel. In conclusion, the 1H-NMR-PLS method is fairly useful for the quality control of biodiesel–diesel blends, whose commercialisation has increased in the last few years.  相似文献   

2.
This work quantifies the adulteration of ethyl and methyl soybean biodiesels/diesel (B5) blended with soybean oil using mid‐infrared spectroscopy associated with multivariate calibration. The models constructed by the method of partial least squares (PLS) presented low values of root‐mean‐square error of prediction 0.22 % (w/w) and 0.26 % (w/w), respectively, for models containing ethyl and methyl soybean biodiesel. Along with the parameters of error, accuracy was evaluated by the use of an elliptical joint confidence region (EJCR). The EJCR for the both PLS models showed there was no significant difference between the prepared concentration values and PLS predicted concentration values, and that there was no evidence of bias within the 95 % confidence level. The PLS models showed excellent correlation in the prediction set (R = 0.999) and did not present systematic errors according to the ASTM E1655 standard. Therefore, the models presented excellent performance in quantifying soybean oil as an adulterant in B5 blends, in concentrations within the range 1.00–30.00 % (w/w). The proposed methodology showed itself to be efficient for quality control of B5 contaminated with vegetable oil.  相似文献   

3.
This work investigates the impacts on fuel consumption and exhaust emissions of a diesel power generator operating with biodiesel. Fuel blends with 5%, 20%, 35%, 50%, and 85% of soybean biodiesel in diesel oil, and fuel blends containing 5%, 20%, and 35% of castor oil biodiesel in diesel oil were tested, varying engine load from 9.6 to 35.7 kW. Specific fuel consumption (SFC) and the exhaust concentrations of carbon dioxide (CO2), carbon monoxide (CO), and hydrocarbons (HC) were evaluated. The engine was kept with its original settings for diesel oil operation. The results showed increased fuel consumption with higher biodiesel concentration in the fuel. Soybean biodiesel blends showed lower fuel consumption than castor biodiesel blends at a given concentration. At low and moderate loads, CO emission was increased by nearly 40% and over 80% when fuel blends containing 35% of castor oil biodiesel or soybean biodiesel were used, respectively, in comparison with diesel oil. With the load power of 9.6 kW, the use of fuel blends containing 20% of castor oil biodiesel or soybean biodiesel increased HC emissions by 16% and 18%, respectively, in comparison with diesel oil. Exhaust CO2 concentration did not change significantly, showing differences lower than ±3% of the values recorded for diesel oil operation, irrespective of biodiesel type, concentration and the load applied. The results demonstrate that optimization of fuel injection system is required for proper engine operation with biodiesel.  相似文献   

4.
Partial least squares models (PLS) using near and middle infrared spectrometry were developed to predict quality parameters of diesel/biodiesel blends (density, sulphur content and distillation temperatures). Practical aspects are discussed, such as calibration set composition; model efficiency using different infrared regions and spectrometers; and the calibration transfer problem. The root mean square errors of prediction, employing both regions and equipment, were comparable with the reproducibility of the corresponding standard method for the properties investigated. Calibration transfer between the two instruments, using direct standardization (DS), yielded prediction errors comparable to those obtained with complete recalibration of the secondary instrument.  相似文献   

5.
The search for alternative fuels has been gaining attention in recent decades. The replacement of fossil fuels is driven by environmental, economic, and social factors, since the whole of society is dependent on their usage; and in this context, one alternative that has been highlighted is the use of biodiesel. Biodiesel represents a renewable, biodegradable, non‐inflammable, and low toxicity alternative to diesel. In this study, the Hansen solubility parameters (HSPs) and the interaction radii (R0) were determined for the following materials: used frying oil, coconut oil, palm oil, biodiesel from used frying oil, diesel, and biodiesel–diesel blends (B10 and B20), using 45 solvents and solvent mixtures. The values found for the solubility parameters of the used frying oil and coconut oil were very close to those found for the biodiesel; however, the biofuel showed higher solubility in polar solvents. The values of solubility parameters of diesel, B10, and B20 were similar, increasing values according to the amount (by volume) of biodiesel added to diesel fuel.  相似文献   

6.
Haiying Tang  Steven O. Salley  K.Y. Simon Ng 《Fuel》2008,87(13-14):3006-3017
The formation of precipitates in biodiesel blends may have serious implications for diesel engine fuel delivery systems. Precipitates were observed in Soybean oil (SBO-), cottonseed oil (CSO-), and poultry fat (PF-) based biodiesel blends after storage at 4 °C. CSO- and PF-based biodiesel had a lower mass of precipitates observed than the SBO-based. Moreover, different rates of precipitate formation were observed for the B20 versus the B100. These suggested that the formation of precipitate during cold temperature storage was dependent on the feedstock and blend concentration. The solvency effects of biodiesel blends were more pronounced at low temperature than at room temperature leading to a higher amount of precipitates formed. Fourier transform infrared (FTIR) spectra, and gas chromatography-flame ionization detector (GC-FID) chromatograms indicated that steryl glucosides are the major cause of precipitate formation in SBO-based biodiesel; while for PF-based biodiesel, the precipitates are due to mono-glycerides. However, the precipitates from CSO-based biodiesel are due to both steryl glucosides and mono-glycerides.  相似文献   

7.
A test was conducted to investigate the effect of pure biodiesel without additives on formation of particulate matter (PM) and nitrogen oxide (NOx) in the exhaust gas of a diesel engine. Pure biodiesel from waste cooking oil without adding any additive was used. The biodiesel was oxidized at 110 °C for 10 days and blended with commercial automobile diesel oil distributed in the market as a testing fuel. Blended fuels were produced by adding 10% of oxidized biodiesel and un-oxidized biodiesel to automobile diesel oil, respectively. Material properties such as density, kinematic viscosity, oxidation stability, and cetane number were tested. Emission tests were conducted using a large diesel engine of direct injection type, inline six-cylinder, 4 stroke, turbocharger and intercooler. The oxidized and unoxidized biodiesel blends did not show any difference in density and kinematic viscosity. The oxidation stability of the oxidized biodiesel blends was lower than that of the unoxidized biodiesel blends. In the emission test, the two blends showed almost no difference in the total number of concentration of the micro-particles, and also showed almost no difference in particle size distribution such as nucleation mode and accumulation mode. On the other hand, the oxidized biodiesel blends showed less PM and NOx emission than the unoxidized biodiesel blends.  相似文献   

8.
This paper analyses the fuel injection characteristics of bioethanol-diesel fuel and bioethanol-biodiesel blends considered as fuel for diesel engines. Attention is focused on the injection characteristics which significantly influence the engine characteristics and subsequently the exhaust emissions. In this context the following injection characteristics have been investigated experimentally: fuelling, injection timing, injection delay, injection duration, mean injection rate, and injection pressure. The tested fuels were neat mineral diesel fuel, neat biodiesel made from rapeseed oil, bioethanol/diesel fuel and bioethanol/biodiesel blends up to 15% (v/v) bioethanol with an increment of 5%. The fuels blends were experimentally investigated in a fuel injection M system at rated condition (FL, 1100 rpm), peak torque (FL, 850 rpm), and maximum pump speed (1100 rpm) for different partial loads (PL 75% and PL 50%), at ambient temperature.It has been proven that for all operating regimens tested, the addition of bioethanol to biodiesel reduces fuelling, injection timing, injection duration, mean injection rate and maximum injection pressure and increases injection delay compared to pure biodiesel. Meanwhile, increasing bioethanol in diesel fuel shows no significant variations or a slightly increase in fuelling, injection timing, injection duration, and mean injection rate and a decrease in injection delay and maximum injection pressure, compared to pure diesel fuel.The influence of bioethanol in biodiesel is much more significant that in diesel fuel; it has a beneficial effect on biodiesel injection characteristics because bioethanol addition brings them nearer to the diesel fuel one and it is expected to decrease biodiesel NOx emissions.  相似文献   

9.
Mid-infrared spectroscopy, in association with multivariate chemometric techniques, was employed for pattern recognition and the determination of the composition of waste frying oils (WFO); data are presented in terms of the percentage of soybean oil, palm oil and hydrogenated vegetable fat in frying oil blends. Principal component analysis (PCA) was performed using spectral data (3,000–600 cm−1) to discriminate between the samples containing 100% soybean oil, 100% palm oil, 100% hydrogenated vegetable fat groups and their blends. Additionally, the results indicated that partial least squares (PLS) models based on mid-infrared spectra were suitable as practical analytical methods for predicting the oil contents in WFO blends. PLS models were validated by a representative prediction set, and the root mean square errors of prediction (RMSEP) were 2.8, 4.7 and 5.5% for palm oil, soybean oil and hydrogenated vegetable fat, respectively. The proposed methodology can be very useful for the rapid and low cost determination of waste frying oil composition while also aiding in decisions regarding the management of oil pretreatment and production routes for biodiesel production.  相似文献   

10.
In this work, rapid and non-destructive methodology is proposed for screening of biodiesel/diesel blends with respect to the base oil, using near infrared spectroscopy and multivariate data analysis, since for both pure biodiesel and blends, the biodiesel/diesel are targets for tampering. Blends of diesel with cotton, sunflower and soybean oils were employed in this study. Two approaches were evaluated in the building of the classification model, using full-spectrum Soft Independent Modelling of Class Analogy (SIMCA), and Principal Component Analysis–Linear Discriminant Analysis (PCA–LDA). The other approaches were the use of variable selection employing Genetic Algorithm (GA), Successive Projection Algorithm (SPA) and Stepwise all coupled with the LDA model. The results showed which preprocessed NIR spectra and chemometrics are a viable alternative the conventional methods that involve the consumption of large volumes of reagents. Multivariate data analysis methods using selected variables showed a better performance than the methods using a full spectrum.  相似文献   

11.
Partial least-squares (PLS), interval partial least squares (iPLS) and synergy partial least squares (siPLS) regressions were used to simultaneous determination of quality parameters of biodiesel/diesel blends. Biodiesel amount, specific gravity, sulfur content and flash point were evaluated using spectroscopic data in the mid-infrared region obtained with a horizontal attenuated total reflectance (HATR) accessory. Eighty-five binary blends were prepared using biodiesel and two types of diesel, in concentrations from 0.2 to 30% (v/v). Fifty-seven samples were used as a calibration set, whereas 28 samples were used as an external validation set. All samples were characterized using the appropriated standard methods. The specific gravity values at 20 °C were in the range of 848.2-866.2 kg/m3. Flash point values lay between 47.0 and 79.5 °C. Sulfur content values varied from 312 to 1351 mg/kg. Raw spectra of the samples were corrected by multiplicative scatter correction (MSC) and were pre-processed using a mean-centered procedure. Algorithms iPLS and siPLS were able to select the most adequate spectral region for each property studied. For all the properties studied, the siPLS algorithm produced better models than the full-spectrum PLS, selecting the most important bands. The quantification of biodiesel was performed using two spectral regions between 650-1909 cm−1 and 2746-3165 cm−1, and an excellent correlation coefficient of R2 = 0.9996 was obtained. The specific gravity was determined from the spectral region from 650 to 1070 cm−1, which yielded a very good correlation coefficient of R2 = 0.9987. The sulfur content was evaluated from the spectral regions of 1070-1491 cm−1 and 2746-3165 cm−1. A very good correlation coefficient of R2 = 0.9995 was obtained, regardless of whether the samples were formulated with metropolitan or countryside diesel. Finally, the flash point was determined from the spectral region between 756 and 968 cm−1 and a very good correlation coefficient of R2 = 0.9982 was obtained.  相似文献   

12.
Ekrem Buyukkaya 《Fuel》2010,89(10):3099-3105
Experimental tests were investigated to evaluate the performance, emission and combustion of a diesel engine using neat rapeseed oil and its blends of 5%, 20% and 70%, and standard diesel fuel separately. The results indicate that the use of biodiesel produces lower smoke opacity (up to 60%), and higher brake specific fuel consumption (BSFC) (up to 11%) compared to diesel fuel. The measured CO emissions of B5 and B100 fuels were found to be 9% and 32% lower than that of the diesel fuel, respectively. The BSFC of biodiesel at the maximum torque and rated power conditions were found to be 8.5% and 8% higher than that of the diesel fuel, respectively. From the combustion analysis, it was found that ignition delay was shorter for neat rapeseed oil and its blends tested compared to that of standard diesel. The combustion characteristics of rapeseed oil and its diesel blends closely followed those of standard diesel.  相似文献   

13.
Microemulsification and blending are two viscosity-modifying techniques of vegetable oils for direct use with diesel engine. In this study, alcohol blends are mixtures of ethanol, diesel, and palm-oil biodiesel while microemulsion biofuels are thermodynamically stable, clear, and single-phase mixtures of diesel, palm oil, and ethanol stabilized by surfactants and cosurfactants. Although there are many studies on biofuels lately, there is limited research on using biodiesel as a surfactant in microemulsion formulations and applied on engine performance at different engine loads. Therefore, the objectives are to investigate phase stability and fuel properties of formulated biofuels (various blends and microemulsions), to determine the engine performance at different engine loads (no load, and from 0.5 to 2.0 kW), and to estimate laboratory-scale cost of the selected biofuels compared to diesel and biodiesel. The results showed that phase stability and fuel properties of selected microemulsion biofuels are comparable to diesel and biodiesel. These microemulsion biofuels can be applied to the diesel engine at different loads while diesel-ethanol blends and palm-oil-biodiesel-ethanol blends cannot be. It was found that the energy efficiencies of the system using microemulsion biofuels were slightly lower than the average energy efficiency of diesel engine. From this study, it can be summarized that microemulsion biofuels can be formulated using palm-oil biodiesel (palm-oil methyl ester) as a bio-based surfactant and they can be considered as environmentally-friendly alternatives to diesel and biodiesel. However, cost considerations showed that the raw materials should be locally available to reduce additional costs of microemulsion biofuels.  相似文献   

14.
In order to identify possible adulteration of onroad diesel with vegetable oil, fluorescence spectroscopy was used as the analytical technique to differentiate between vegetable oil and biodiesel in diesel blends. Diesel/oil and diesel/biodiesel blends made with different proportions of soy, canola or waste cooking oil were analyzed. The reduced cost of analysis using fluorescence spectroscopy together with the reliability of the results suggest that this technique could be of great use in differentiating between diesel, biodiesel and vegetable oil and could therefore be used for rapid identification or confirmation of adulterated diesel. Furthermore, a compact fluorescence spectrophotometer with an LED excitation source could be used in gas stations or fuel distributors for diesel quality control because of its practicality, low cost and reliability.  相似文献   

15.
This work presents the physical-chemical properties of fuel blends of waste cooking oil biodiesel or castor oil biodiesel with diesel oil. The properties evaluated were fuel density, kinematic viscosity, cetane index, distillation temperatures, and sulfur content, measured according to standard test methods. The results were analyzed based on present specifications for biodiesel fuel in Brazil, Europe, and USA. Fuel density and viscosity were increased with increasing biodiesel concentration, while fuel sulfur content was reduced. Cetane index is decreased with high biodiesel content in diesel oil. The biodiesel blends distillation temperatures T10 and T50 are higher than those of diesel oil, while the distillation temperature T90 is lower. A brief discussion on the possible effects of fuel property variation with biodiesel concentration on engine performance and exhaust emissions is presented. The maximum biodiesel concentration in diesel oil that meets the required characteristics for internal combustion engine application is evaluated, based on the results obtained.  相似文献   

16.
Safflower seed oil was chemically treated by the transesterification reaction in methyl alcohol environment with sodium hydroxide (NaOH) to produce biodiesel. The produced biodiesel was blended with diesel fuel by 5% (B5), 20% (B20) and 50% (B50) volumetrically. Some of important physical and chemical fuel properties of blend fuels, pure biodiesel and diesel fuel were determined. Performance and emission tests were carried out on a single cylinder diesel engine to compare biodiesel blends with petroleum diesel fuel. Average performance reductions were found as 2.2%, 6.3% and 11.2% for B5, B20 and B50 fuels, respectively, in comparison to diesel fuel. These reductions are low and can be compensated by a slight increase in brake specific fuel consumption (Bsfc). For blends, Bsfcs were increased by 2.8%, 3.9% and 7.8% as average for B5, B20 and B50, respectively. Considerable reductions were recorded in PM and smoke emissions with the use of biodiesel. CO emissions also decreased for biodiesel blends while NOx and HC emissions increased. But the increases in HC emissions can be neglected as they have very low amounts for all test fuels. It can be concluded that the use of safflower oil biodiesel has beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel.  相似文献   

17.
A number of investigations have examined the impact of the use of biodiesel on the emissions of carbon dioxide and regulated emissions, but limited information exists on the chemical composition of particulate matter from diesel engines burning biodiesel blends. This study examines the composition of diesel particulate matter (DPM) emissions from a commercial agriculture tractor burning a range of biodiesel blends operating under a load that is controlled by a power take off (PTO) dynamometer. Ultra-low sulfur diesel (ULSD) fuel was blended with soybean and beef tallow based biodiesel to examine fuels containing 0% (B0), 25% (B25), 50% (B50), 75% (B75), and 100% (B100) biodiesel. Samples were then collected using a dilution source sampler to simulate atmospheric dilution. Diluted and aged exhaust was analyzed for particle mass and size distribution, PM2.5 particle mass, PM2.5 organic and elemental carbon, and speciated organic compounds. PM2.5 mass emissions rates for the B25, B50, and B75 soybean oil biodiesel mixtures had 20%–30% lower emissions than the petroleum diesel, but B100 emissions were about 40% higher than the petroleum diesel. The trends in mass emission rates with the increasing biodiesel content can be explained by a significant decrease in elemental carbon (EC) emissions across all blending ranges and increasing organic carbon (OC) emissions with pure biodiesel. Beef tallow biodiesel blends showed similar trends. Nevertheless, it is important to note that the study measurements are based on low dilution rates and the OC emissions changes may be affected by ambient temperature and different dilution conditions spanning micro-environments and atmospheric conditions. The results show that the use of biodiesel fuel for economic or climate change mitigation purposes can lead to reductions in PM emissions and a co-benefit of EC emission reductions. Detailed speciation of the OC emissions were also examined and are presented to understand the sensitivity of OC emissions with respect to biodiesel fuel blends.

Copyright 2012 American Association for Aerosol Research  相似文献   

18.
The insolubles formed in biodiesel blends can cause operation problems because they can plug the fuel lines and filters. The formation of insolubles in soybean oil (SBO-), yellow grease (YG-), and palm oil (PO-) based biodiesel blends after cold soaking at 4 °C was investigated. PO-based biodiesel blends displayed a much higher time to filter (TTF) and greater insoluble mass, compared to SBO-, and YG-based biodiesel blends. Fourier transform infrared (FTIR) spectra and gas chromatography-flame ionization detector (GC-FID) chromatograms indicated that PO-based biodiesel insolubles can be attributed to monoglycerides, while SBO-based biodiesel insolubles are due to steryl glucosides (SG). A simple analytical method for identification of SG in biodiesel samples was established by GC-FID.  相似文献   

19.
Oleander oil has been used as raw material for producing biodiesel using ultrasonic irradiation method at the frequency of 20 kHz and horn type reactor 50 watt. A two-step transesterification process was carried out for optimum condition of 0.45 v/v methanol to oil ratio, 1.2% v/v H2SO4 catalyst, 45 °C reaction temperature and 15min reaction time, followed by treatment with 0.25 v/v methanol to oil ratio, 0.75% w/v KOH alkaline catalyst, 50 °C reaction temperature and 15 min reaction time. The fuel properties of Oleander biodiesel so obtained confirmed the requirements of both the standards ASTM D6751 and EN 14214 for biodiesel. Further Oleander biodiesel-diesel blends were tested to evaluate the engine performance and emission characteristics. The performance and emission of 20% Oleander biodiesel blend (B20) gave a satisfactory result in diesel engines as the brake thermal efficiency increased 2.06% and CO and UHC emissions decreased 41.4% and 32.3% respectively, compared to mineral diesel. Comparative investigation of performance and emissions characteristics of Oleander biodiesel blends and mineral diesel showed that oleander seed is a potential source of biodiesel and blends up to 20% can be used for realizing better performance from an unmodified diesel engine.  相似文献   

20.
《Fuel》2007,86(1-2):143-151
The dynamic viscosities of biodiesel derived from ethyl esters of fish oil, no. 2 diesel fuel, and their blends were measured from 298 K down to their respective pour points. Blends of B80 (80 vol.% biodiesel–20 vol.% no. 2 diesel), B60, B40 and B20 were investigated. All the viscosity measurements were made with a Bohlin VOR Rheometer. Cloud point and pour point measurements were made according to ASTM standards. Arrhenius equations were used to predict the viscosities of the pure Biodiesel (B100), no. 2 diesel fuel (B0) and the biodiesel blends (B80, B60, B40, and B20) as a function of temperature. The predicted viscosities agreed well with measured values. An empirical equation for calculating the dynamic viscosity of these blends as a function of both temperature and blend has been developed. Furthermore, based on the kinematic viscosity and density measurements of B100 up to 573 K by Tate et al. [Tate RE, Watts KC, Allen CAW, Wilkie KI. The viscosities of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006;85:1010–5; Tate RE, Watts KC, Allen CAW, Wilkie KI. The densties of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006;85:1004–9] an empirical equation for predicting the dynamic viscosity of pure biodiesel for temperatures from 277 K to 573 K is given. Empirical equations for predicting the cloud and pour point for a given blend give values in good agreement with experiments. The dynamic viscosity of biodiesel and its blends increases as temperature decreases and show Newtonian behaviour down to the pour point. Dynamic viscosity, cloud point and pour point decreases with an increase in concentration of no. 2 diesel in the blend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号