首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
The neural cell adhesion molecule (NCAM) plays important functional roles in the developing and mature nervous systems. Here, we show that the transient receptor potential canonical (TRPC) ion channels TRPC1, −4, and −5 not only interact with the intracellular domains of the transmembrane isoforms NCAM140 and NCAM180, but also with the glycan polysialic acid (PSA) covalently attached to the NCAM protein backbone. NCAM antibody treatment leads to the opening of TRPC1, −4, and −5 hetero- or homomers at the plasma membrane and to the influx of Ca2+ into cultured cortical neurons and CHO cells expressing NCAM, PSA, and TRPC1 and −4 or TRPC1 and −5. NCAM-stimulated Ca2+ entry was blocked by the TRPC inhibitor Pico145 or the bacterial PSA homolog colominic acid. NCAM-stimulated Ca2+ influx was detectable neither in NCAM-deficient cortical neurons nor in TRPC1/4- or TRPC1/5-expressing CHO cells that express NCAM, but not PSA. NCAM-induced neurite outgrowth was reduced by TRPC inhibitors and a function-blocking TRPC1 antibody. A characteristic signaling feature was that extracellular signal-regulated kinase 1/2 phosphorylation was also reduced by TRPC inhibitors. Our findings indicate that the interaction of NCAM with TRPC1, −4, and −5 contributes to the NCAM-stimulated and PSA-dependent Ca2+ entry into neurons thereby influencing essential neural functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号