首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 891 毫秒
1.
In the case of increasing fragmentation of wetlands, the study of the relationship between wetland landscape characteristics and total nitrogen(TN) in water is of great significance to reveal the mechanism of wetland water purification. Taking the Naoli River(NR) wetlands in Northeast China as the research object, 10 uniformly distributed sampling sites in the study area were sampled in August 2015 to test the TN concentration and interpret the images of NR wetlands in the same period. Taking the sampling site as the control point, the whole wetlands were divided into 10 regions, and the landscape index of each region was extracted. In order to reveal whether the landscape characteristics are related to the TN concentration in the wetlands water body, the landscape index and the TN concentration in the control point water body were analyzed by correlation analysis, step-by-step elimination analysis and path analysis to reveal whether the landscape characteristics are related to the TN concentration under wetlands receiving agricultural drainages. The results showed that the correlation coefficients between four area indexes or eight shape indexes and TN concentration did not reach a significant correlation level(P > 0.05), indicating that TN removal was not only determined by a single landscape index. The path coefficient of edge density(ED) index is –0.41, indicating that wetland patch connectivity is the primary factor of TN removal, and there is no relationship between the larger patch area and the higher TN removal. The removal of TN in wetlands is restricted by the synergistic effect of landscape area and shape characteristics.  相似文献   

2.
Wetlands are sensitive to climate change, in the same time, wetlands can influence climate. This study analyzed the spatio-temporal characteristics of wetland change in the semi-arid zone of Northeast China from 1985 to 2010, and investigated the impact of large area of wetland change on local climate. Results showed that the total area of wetlands was on a rise in the study area. Although natural wetlands(marshes, riparians and lakes) decreased, constructed wetlands(rice fields) increased significantly, and the highest increase rate in many places exceeded 30%. Anthropogenic activities are major driving factors for wetland change. Wetland change produced an impact on local climate, mainly on maximum temperature and precipitation during the period of May–September. The increase(or decrease) of wetland area could reduce(or increase) the increment of maximum temperature and the decrement of precipitation. The changes in both maximum temperature and precipitation corresponded with wetland change in spatial distribution. Wetland change played a more important role in moderating local climate compared to the contribution of woodland and grassland changes in the study area. Cold-humid effect of wetlands was main way to moderating local climate as well as alleviating climatic warming and drying in the study area, and heterogeneity of underlying surface broadened the cold-humid effect of wetlands.  相似文献   

3.
Biotic indicators have been widely used to monitor wetland health. However, few studies have explicitly evaluated if plant diversity could serve as a useful community-level indicator of wetland stability, especially when wetlands are confronted with anthropogenic perturbations. Based on three-year record of wetland plant species abundance in Napahai plateau wetland, Shangri-la under the influence of varying anthropogenic perturbation types, our study tests the impact of such perturbations on plant richness and the relationship between ecosystem temporal stability and plant richness, and further assesses the effectiveness of using plant diversity indicator to probe ecosystem temporal stability of Napahai plateau wetland and the potential mechanisms. The results showed that anthropogenic perturbations could have contributed significantly to realistic variation in plant diversity, and further demonstrated that ecosystem temporal stability was positively related to realistic variation in plant diversity. In particular, communities with high levels of diversity might have better capacity to dampen perturbation impacts than communities with low levels of diversity, and statistical averaging could have played an important role in causing greater stability in more diverse communities. Also, asynchrony might have a stabilizing effect on community stability, and diversity could have stabilized communities through both species asynchrony and population stability propagation. Therefore, our results suggest that plant diversity could be used as a useful indicator of the stability conditions of plateau wetland ecosystems confronted with anthropogenic perturbations, and the preservation of plant communities at sufficient abundance and diversity is necessary for maintaining healthy plateau wetlands and for sustaining their essential ecosystem functions and services.  相似文献   

4.
Wetlands play a very important role in ecosystems. Qixinghe Wetland is a nature reserve area in northeastern China. In this paper, diatom communities and environmental qualities were investigated at eight sites in Qixinghe Wetland. This study was to examine diatom species patterns in relation to environmental variables in wetlands, and to use diatoms as indicators to water quality in wetlands and wetland classification. Diatoms were sampled in summers and autumns in 2002 and 2004, during which 180 taxa were identified. Environmental variations in pH, temperature, biochemical oxygen demand (BOD), and chemical oxygen demand (COD) were measured. The seasonal composition and abundance of diatoms changed greatly during the study period. The relationship between diatoms and chemical water quality was estimated statistically. Canonical correspondence analysis (CCA) with forward selection and Monte Carlo permutation tests revealed that all water environmental variables changed during the study period (P<0.05). Among all the parameters, variation in BOD among the sites was a very important determinant of species composition according to the CCA, and BOD decreased from 2002 to 2004. Our results suggest that the water quality had improved during the three-year period because of enhanced environmental protection with less human disturbance. We conclude that diatoms can be used to indicate water quality and habitat conditions in this wetland.  相似文献   

5.
Accurate information on the spatial distribution and temporal change of wetlands is vital to devise effective measures for their protection. This study uses satellite images in 1994 and 2001 to assess the effects of topography and proximity to channels on wetland change in Maduo County on the Qinghai-Tibet Plateau, western China. In 1994 wetlands in the study area extended over 6,780.0 km2. They were distributed widely throughout the county, with a higher concentration in the south, and were especially prominent close to streams. The pattern of wetlands demonstrated a bell-shaped distribution curve with elevation, ranging over hill slopes with gradients from 0-19°, the commonest gradient being around 3°. Although the aspects of these hill slopes range over all directions, there is a lower concentration of wetlands facing east and southeast. The extent of wetlands in 2001 decreased to 6,181.1 km2. Marked spatial differentiation in the pattern of wetlands is evident, as their area increased by 1,193.3 km2 at lower elevations but decreased by 1,792.2 km2 at higher ground, resulting in a net decrease of 598.8 km2. In areas with a gradient <2° or >9° the area of wetlands remained approximately consistent from 1994-2001. Newly retained wetlands are situated in relatively flat lowland areas, with no evident preference in terms of aspect. Wetlands on north-, east- and northeast-facing hillslopes with a bearing of 1-86° were more prone to loss of area than other orientations. The altered pattern of wetland distribution from higher to lower elevation on north-facing slopes coincided with the doubling of annual temperature during the same period, suggesting that climate warming could be an important cause.  相似文献   

6.
Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem. This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow River Delta, China. We calculated the hydrological connectivity based on the hydraulic resistance and graph theory, and measured soil total carbon and organic carbon under four different hydrological connectivity gradients(Ⅰ 0-0.03, Ⅱ 0.03-0.06, Ⅲ 0.06-0.12, Ⅳ 0.12-0.39). The results showed that hydrological connectivity increased in the north shore of the Yellow River and the south tidal flat from 2007 to 2018, which concentrated in the mainstream of the Yellow River and the tidal creek. High hydrological connectivity was maintained in the wetland restoration area.The soil total carbon storage and organic carbon storage significantly increased with increasing hydrological connectivity from Ⅰ to Ⅲgradient and decreased in Ⅳ gradient. The highest soil total carbon storage of 0-30 cm depth was 5172.34 g/m2, and organic carbon storage 2764.31 g/m2 in Ⅲ gradient. The hydrological connectivity changed with temporal and spatial change during 2007-2018 and had a noticeable impact on soil carbon storage in the Yellow River Delta. The results indicated that appropriate hydrological connectivity, i.e. 0.08, could effectively promote soil carbon storage.  相似文献   

7.
The aboveground biomass allocation and water relations in alpine shrubs can provide useful information on analyzing their ecological and hydrological functions in alpine regions. The objectives of this study were to compare the aboveground biomass allocation, water storage ratio and distribution between foliage/woody components,and to investigate factors affecting aboveground biomass allocation and water storage ratio in alpine willow shrubs in the Qilian Mountains, China. Three experimental sites were selected along distance gradients from the riverside in the Hulu watershed in the Qilian Mountains. The foliage, woody component biomass, and water allocation of Salix cupularis Rehd.and Salix oritrepha Schneid. shrubs were measured using the selective destructive method. The results indicated that the foliage component had higher relative water and biomass storage than the woody component in the upper part of the crown in individual shrubs. However, the woody component was the major biomass and water storage component in the whole shrub level for S. cupularis and S.oritrepha. Moreover, the foliage/woody component biomass ratio decreased from the top to the basal level of shrubs. The relative water storage allocation was significantly affected by species types, but was not affected by sites and interaction between species and sites. Meanwhile, relative water storage was affectedby sites as well as by interaction between sites and species type.  相似文献   

8.
Accurate wetland delineation is the basis of wetland definition and mapping, and is of great importance for wetland management and research. The Zoigê Plateau on the Qinghai-Tibet Plateau was used as a research site for research on alpine wetland delineation. Several studies have analyzed the spatiotemporal pattern and dynamics of these alpine wetlands, but none have addressed the issues of wetland boundaries. The objective of this work was to discriminate the upper boundaries of alpine wetlands by coupling ecological methods and satellite observations. The combination of Landsat 8 images and supervised classification was an effective method for rapid identification of alpine wetlands in the Zoigê Plateau. Wet meadow was relatively stable compared with hydric soils and wetland hydrology and could be used as a primary indicator for discriminating the upper boundaries of alpine wetlands. A slope of less than 4.5° could be used as the threshold value for wetland delineation. The normalized difference vegetation index(NDVI) in 434 field sites showed that a threshold value of 0.3 could distinguish grasslands from emergent marsh and wet meadow in September. The median normalized difference water index(NDWI) of emergent marsh remained more stable than that of wet meadow and grasslands during the period from September until July of the following year. The index of mean density in wet meadow zones was higher than the emergent and upland zones. Over twice the number of species occurred in the wet meadow zone compared with the emergent zone, and close to the value of upland zone. Alpine wetlands in the three reserves in 2014 covered 1175.19 km2 with a classification accuracy of 75.6%. The combination of ecological methods and remote sensing technology will play an important role in wetland delineation at medium and small scales. The correct differentiation between wet meadow and grasslands is the key to improving the accuracy of future wetland delineation.  相似文献   

9.
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.  相似文献   

10.
Land surface area estimation can provide basic information for accurately estimating vegetation carbon storage under complex terrain. This study selected China, a country dominated by mountains, as an example, and calculated terrestrial vegetation carbon storage(VCS) for 2000 and 2015 using land surface area and traditional ellipsoid area. The land surface area is estimated by a triangular network on the high precision digital elevation model.The results showed that: 1) The VCS estimated by the surface area measurement in 2000 and 2015 were 0.676 and0.692 Pg C(1 Pg = 1015 g) higher than the VCS calculated using the ellipsoid area, respectively. 2) As the elevation increases, the differences between VCS estimated by surface area measurement and ellipsoid area measurement are expanding. Specially, a clear gap was present starting from an elevation of 500 m, with the relative error exceeds8.99%. 3) The total amount of carbon emitted due to land use change reached 0.114 Pg C. The conversions of forestland and grassland to other land use type are the main reasons of the loss of vegetation carbon storage, resulting in a total amount of biomass carbon storage decreased by 0.942 and 0.111 Pg C, respectively. This study was a preliminary exploration of incorporating land surface area as a factor in resource estimation, which can help more accurately understand the status of resources and the environment in the region.  相似文献   

11.
The high Zoige Basin (Ruoergai Plateau) on the eastern Tibetan Plateau is a fault depression formed during intensive uplifting of the Tibetan Plateau. The wetland is globally important in biodiversity and is composed of marshes, bogs, fens, wet meadows and shallow water interspersed with low hills and sub-alpine meadows. Most of the Zoige wetlands have long been one of the most important grazing lands in China. Recent rangeland policy has allowed grazing, and usable wetland areas have been being legally allocated to individuals or groups of households on a long-term lease basis. Privatizafion of the wetland has impacted the Zoige wetlands in aspects of hydrologic condition, landscape and biodiversity. The uneven spatial distribution of water resources onprivatelands has led to the practice of extracting ground water, which has decreased the perched water table in Zoige. Fencing off the rangelands and grazing on expanding sand dunes have affected landscapes. Variation in the water table has led to the changes in vegetation diversity, resulting in the changes in wildlife and aquatic diversities and ecosystem processes. Making use all year round of the pasture that was previously grazed only in summer has shrunk the daily activity space of wildlife, and the newly erected fences blocked the movement of wild animals looking for food in the snow to lower and open areas. To maintain the favorable conditions of the Zoige wetland ecosystem, the author suggests that, in addition to biophysical research and implementation of conservation practices, there is an immediate need to initiate an integrated management program, increase public awareness of wetland functions and provide better training for the local conservation staff.  相似文献   

12.
The Poyang Lake is a Ramsar site and is the important over-wintering site for migratory waterbirds along the East Asian–Australasian Fly way. Examining the effects of water level fluctuations on waterbird abundance and analyzing the influencing mechanism is critical to waterbird protection in the context of hydrological alteration. In this study, the effect of water level regime on wintering goose abundance was examined and the influencing mechanism was interpreted. Synchronous waterbirds survey data, hydrological data, Moderate Resolution Imaging Spectroradiometer-Normalized Difference Vegetation Index(MODIS-NDVI) data and habitat data derived from Landsat TM/ETM data and HJ/CCD data were combined. The satellite-derived Green Wave Index(GWI) based on MODIS-NDVI dataset was applied to detect changes in goose food resources. It was found that habitat size and vegetation conditions are key factors determining goose abundance. Geese numbers were positively correlated with habitat area, while intermediate range of vegetation productivity might benefit the goose abundance. Water level affects goose abundance by changing available habitat areas and vegetation conditions. We suggested that matching hydrological regime and exposed meadows time to wintering geese dynamics was crucial in the Poyang Lake wetlands. Our study could provide sound scientific information for hydrological management in the context of waterbird conservation.  相似文献   

13.
In recent years,wetland ecological water requirements (EWRs) have been estimated by using hydrological and functional approaches,but those approaches have not yet been integrated for a whole ecosystem.This paper presents a new method for calculating wetland EWRs,which is based on the response of habitats to water level,and determines water level threshold through the functional integrity of habitats.Results show that in the Huanghe (Yellow) River Delta water levels between 5.0 m and 5.5 m are required to maintain the functional integrity of the wetland at a value higher than 0.7.One of the dominant plants in the delta,Phragmites australis,tolerates water level fluctuation of about ± 0.25 m without the change in wetland functional integrity.The minimum,optimum and maximum EWRs for the Huanghe River Delta are 9.42×106 m3,15.56×106 m3 and 24.12×106 m3 with water levels of 5.0 m,5.2 m and 5.5 m,corresponding to functional integrity indices of 0.70,0.84 and 0.72,respectively.A wetland restoration program has been performed,which aims to meet these EWRs in attempt to recover from losses of up to 98% in the delta's former wetland area.  相似文献   

14.
Based on the data from China′s Seventh Forest Inventory for the period of 2004–2008, area and stand volume of different types and age-classes of plantation were used to establish the relationship between biomass density and age of planted forests in different regions of the country. Combined with the plantation area in the first-stage of the Natural Forest Protection(NFP) program(1998–2010), this study calculated the biomass carbon storage of the afforestation in the first-stage of the program. On this basis, the carbon sequestration potential of these forests was estimated for the second stage of the program(2011–2020). Biomass carbon storage of plantation established in the first stage of the program was 33.67 Tg C, which was majority accounted by protection forests(30.26 Tg C). There was a significant difference among carbon storage in different regions, which depended on the relationship of biomass carbon density, forest age and plantation area. Under the natural growth, the carbon storage was forecasted to increase annually from 2011 to 2020, reaching 96.03 Tg C at the end of the second-stage of the program in 2020. The annual growth of the carbon storage was forecasted to be 6.24 Tg C/yr, which suggested that NFP program has a significant potential for enhancing carbon sequestration in plantation forests under its domain.  相似文献   

15.
Based on the climate factors data and surface vapor pressure(SVP) data of 44 weather stations in Tianshan Mountains during the years 1961-2011, this paper establishes a water vapor content(WVC) estimation model according to the relationship between monthly WVC of radiosonde and corresponding SVP and analyzes the spatial and temporal variability of WVC and their causes. The results show that the WVC is linearly and negatively related to the elevation and longitude(Vertical zonality and Longitude zonality), while it was not linearly related to the latitude. The westerly wind, geographical situation and sea level elevation composed complex surface conditions to influence the spatial distribution of WVC in the Tianshan Mountains. The Mann-Kendall(M-K) statistical test shows a significant increasing trend in the mean annual WVC in Tianshan Mountains during 1961-2011(P 0.001), with a rate of 0.23 mm/decade, and indicates an abrupt turning point in 1985(P 0.001). Correlation analysis shows that the WVC are significantly correlated to the temperature, especially during the winter, but the summer WVC are significantly correlated to the precipitation. In addition, the North Atlantic Oscillation Index(NAOI)and the Arctic Oscillation Index(AOI) are significantly correlated to the winter WVC in the Tianshan Mountains. As a new Microwave radiometric profilers(MWRPs) instrument, the MP-3000 A provides continuous, real-time and high temporal resolution atmospheric profiles up to 10 km. In order to monitor water vapor and atmosphere profiles in Tianshan Mountains, an MP-3000 A was established in Urumqi(43.8°N, 87.58°N) in May 2008. The results indicated that the MP-3000 A was applicable to this area, and the evolutionary process of water vapor and the WVC peak values of MP-3000 A were a strong signal for rainstorm and flood forecasts for Urumqi and the Tianshan Mountains.  相似文献   

16.
The Zoige wetland is the biggest alpine wetland in the world,and an important water resource of the Yellow River.Due to natural and human factors,the Zoige wetland has been seriously degraded.Existing studies on the Zoige wetland mainly focus on the macro features of the wetland,while the influence of the surrounding faults on the Zoige wetland degradation is rarely studied.This study uses terrain data to analyze the cover change and the water loss caused by the Wqie-Seji fault based on the distributed hydrological model.The simulated water loss demonstrates that the Normalized Difference Vegetation Index(NDVI) is the most important factor for inducing water loss.The fault is also a factor that cannot be neglected,which has caused 33% of the wetland water loss.Therefore,it is of importance to study the influence of the fault on the wetland degradation.  相似文献   

17.
Taking a typical inland wetland of Honghe National Nature Reserve (HNNR), Northeast China, as the study area, this paper studied the application of L-band Synthetic Aperture Radar (SAR) image in extracting eco-hydrological information of inland wetland. Landsat-5 TM and ALOS PALSAR HH backscatter images were first fused by using the wavelet-IHS method. Based on the fused image data, the classification method of support vector machines was used to map the wetland in the study area. The overall mapping accuracy is 77.5%. Then, the wet and dry aboveground biomass estimation models, including statistical models and a Rice Cloudy model, were established. Optimal parameters for the Rice Cloudy model were calculated in MATLAB by using the least squares method. Based on the validation results, it was found that the Rice Cloudy model produced higher accuracy for both wet and dry aboveground biomass estimation compared to the statistical models. Finally, subcanopy water boundary information was extracted from the HH backscatter image by threshold method. Compared to the actual water borderline result, the extracted result from L-band SAR image is reliable. In this paper, the HH-HV phase difference was proved to be valueless for extracting subcanopy water boundary information.  相似文献   

18.
In spite of the low temperature during the winter season and the high land environment, the wetland treatment system is gaining popularity in Korea because of its lower construction cost and simplicity in operation and maintenance. Many different types of wetland treatment systems have been built during the last 10 years, among which the free water surface wetland has been predominant. Most of the large-scale systems are government projects for improving the water quality of the streams flowing into the estuary dikes and reservoirs. The covering plants used in this system are different in different areas but cattails and reeds or their combinations are common. Constructed wetlands in Korea can be characterized by their shallow depths and short hydraulic residence times. There is no established flow pattern and configuration rules for constructing wetlands, but many efforts have been made with a view to improving their ecological function. Flow control is the most difficult problem in designing a riverbed or riparian wetland. There have been scores of flow rate control devices developed for wetlands, but none of them guarantee wetlands' safety against flooding. In earlier wetland construction, the building materials were mainly soil. Recently, strong and durable building materials such as rocks, gravel beds, concrete and steel are used at vulnerable places to protect them from erosion. Our investigation indicated that the wetland system would be an appropriate technology because it is not only cheaper to construct, but also requires less maintenance work. However, we suffer from the reduced effectiveness in performance during the winter. We need to evaluate the partial treatment accomplished during 6 to 7 months per year.  相似文献   

19.
Analyzing spatiotemporal dynamics of land use and land cover over time is widely recognized as important to better understand and provide solutions for social, economic, and environmental problems, especially in ecologically fragile region. In this paper, a case study was taken in Zhenlai County, which is a part of farming-pastoral ecotone of Northeast China. This study seeks to use multi-temporal satellite images and other data from various sources to analyze spatiotemporal changes from 1932 to 2005, and applied a quantitative methodology named intensity analysis in the time scale of decades at three levels: time interval, category, and transition. The findings of the case study are as follows: 1) the interval level of intensity analysis revealed that the annual rate of overall change was relatively fast in 1932–1954 and 1954–1976 time intervals. 2) The category level showed that arable land experienced less intensively gains and losses if the overall change was to have been distributed uniformly across the landscape while the gains and losses of forest land, grassland, water, settlement, wetland and other unused land were not consistent and stationary across the four time intervals. 3) The transition level illustrated that arable land expanded at the expense of grassland before 2000 while it gained intensively from wetland from 2000 to 2005. Settlement targets arable land and avoids grassland, water, wetland and other unused land. Besides, the loss of grassland was intensively targeted by arable land, forest land and wetland in the study period while the loss of wetland was targeted by water except for the time interval of 1976–2000. 4) During the early reclamation period, land use change of the study area was mainly affected by the policy, institutional and political factors, followed by the natural disasters.  相似文献   

20.
The mountainous areas of Central Asia provide substantial water resources, and studying change in water storage and the impacts of precipitation and snow cover in the mountain ranges of Central Asia is of the greatest importance for understanding regional water shortages and the main factors. Data from the GRACE(Gravity Recovery and Climate Experiment) satellites, precipitation products and snow-covered area data were used to analyze the spatio-temporal characteristics of water storage changes and the effects of precipitation and snow cover from April 2002 to December 2013. The results were computed for each mountain ranges, and the following conclusions were drawn. The water storage in the mountainous areas of Central Asia as a whole increases in summer and winter, whereas it decreases in autumn. The water storage is affected by precipitation to some extent and some areas exhibit hysteresis. The area of positive water storage changes moves from west to east over the course of the year. The water storage declined during the period 2002–2004. It then returned to a higher level in 2005–2006 and featured lower levels in 2007–2009 Subsequently, the water storage increased gradually from 2010 to 2013. The Eastern Tianshan Mountains and Western Tianshan Mountain subzones examined in this study display similar tendencies, and the trends observed in the Karakorum Mountains and the Kunlun Mountains are also similar. However, the Eastern Tianshan Mountains and Western Tianshan Mountains were influenced by precipitation to a greater degree than the latter two ranges. The water storage in Qilian Mountains showed a pronounced increasing trend, and this range is the most strongly affected by precipitation. Based on an analysis of all investigated subzones, precipitation has the greatest influence on total water storage relative to the snow covered area in some areas of Central Asia. The results obtained from this study will be of value for scientists studying the mechanisms that influence changes in water storage in Central Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号