首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用直流碳弧等离子体法成功制备了碳包覆铁纳米颗粒,利用透射电子显微镜和高分辨透射电子显微镜、X射线衍射、X射线能谱仪对样品的形貌、物相结构、化学成分和粒度进行表征分析,并对碳包覆纳米金属颗粒的形成机理进行初步探讨。结果表明:直流碳弧等离子体技术制备的碳包覆纳米金属颗粒具有明显的铁核(bcc-Fe)/碳壳(石墨层片)包覆结构,颗粒大多呈球形和椭球形,粒径分布在20~60nm范围,平均粒径为44nm,铁粒子外碳层的厚度为5~8nm。碳包覆铁纳米铁颗粒是通过颗粒内部固态形式的碳自行扩散至颗粒表面和颗粒外部气态形式的碳沉积到颗粒表面形成的。  相似文献   

2.
采用自行研制的实验装置,通过阳极弧放电等离子体技术成功制备了碳包裹镍核-壳结构纳米复合颗粒,并采用酸洗和磁选的方法对初产物进行了纯化.利用高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)、透射电子显微镜(TEM)和X射线能量色散分析谱仪(XEDS)等测试手段对样品的化学成分、形貌、微观结构和粒度等特征进行了表征...  相似文献   

3.
以天然棉纤维为模板用一步热解法在氮气气氛中原位制备纳米铜碳复合材料(NCCC),再以浸泡了硫酸铜的棉纤维为热解碳源、以商业纳米铜和微米铜为铜源原位制备了碳包覆纳米/微米铜。使用TEM、XRD和Raman等手段对其表征,研究了这种材料的稳定性。结果表明,NCCC是一种典型的具有碳包覆纳米铜核壳结构的材料;用原位热解法制备碳包覆金属纳米/微米材料,进一步证实棉纤维热解气氛为碳源及原位还原剂。验证了碳包覆材料的抗氧化性:碳壳的形成使NCCC暴露在空气中180 d或水中35 d后仍保持铜和氧化亚铜的物相组成;受碳壳保护的商业纳米铜,暴露空气中120 d仍未氧化。  相似文献   

4.
采用喷射裂解法,以羰基铁为催化剂前驱体,吡啶为碳源,通过改变温度或比例(V(羰基铁)∶V(吡啶))制备了不同形貌的碳纳米材料。采用氯化铵热处理法去除碳材料中的铁催化剂,得到具有空心结构的碳纳米笼和石墨烯片层,采用高分辨透射电镜(HRTEM)对载体的形貌特征进行表征。然后将Pt纳米粒子沉积在碳载体上,得到不同的Pt/C催化剂。通过HRTEM、X射线衍射(XRD)和电化学测试对合成催化剂的结构、形貌和电化学性能进行了表征。实验结果表明:制备温度和反应物比例的变化导致产物的结构形貌发生变化;当作为催化剂载体时,其微观结构和石墨化程度对催化剂的催化活性和稳定性有很大的影响。  相似文献   

5.
采用直流电弧放电等离子体技术成功制备了碳包覆NiO(NiO@C)纳米颗粒,并对样品的形貌、晶体结构、粒度、比表面积和孔结构采用高分辨透射电子显微镜、X射线衍射、X射线能量色散分析谱仪、拉曼散射光谱和N_2吸-脱附等测试手段进行了分析。实验结果表明:直流电弧等离子体技术制备的NiO@C纳米颗粒具有典型的核壳结构,内核为面心立方结构的NiO纳米颗粒,外壳为碳层。颗粒形貌主要为立方体结构,粒度均匀,分散性良好,粒径分布在30~70nm范围,平均粒径为50nm,外壳碳层的厚度为5nm。NiO@C纳米颗粒BET比表面积为28m~2/g,等效直径为46nm,与TEM和XRD测得的结果基本一致。Raman光谱说明样品中碳包覆层的石墨化程度较低,发生了红移现象。  相似文献   

6.
碳纳米洋葱是继富勒烯与碳纳米管之后的又一新型碳纳米材料,在润滑剂、磁性材料等领域具有广阔的应用前景.综述了碳纳米洋葱的主要合成方法(电弧放电法、等离子体法、电子束照射法、热处理法、热解法和化学气相沉积法)及其特点,讨论了碳洋葱的形成机理,并简单介绍了碳纳米洋葱的性能及其应用.  相似文献   

7.
以乙炔(C2H2)为碳源,铁为催化剂,通过化学气相沉积技术在单晶硅衬底上制备了碳纳米带.采用场发射SEM、TEM、激光Raman光谱等先进分析手段对其形态和结构进行了表征.研究发现:碳纳米带是一种准二维材料,厚度约30nm,宽度在几百纳米,长度在100μm量级.碳纳米带的碳层沿着与其生长轴方向一致的(002)晶向排列,碳层的边缘都弯曲折叠成封闭结构.碳纳米带中碳层的排列不很平直,其中存在大量的层错.由此认为碳纳米带可用于能源等领域.  相似文献   

8.
为提高多孔碳球作为超级电容器电极材料在电解液中的离子迁移速率,通过水热法设计制备了以碳球为外壳,金纳米颗粒为核心的核壳结构复合材料(CS-Au)。之后通过KOH活化,制备的样品(PCS-Au)比表面积可达到962.48m2/g。结果表明:在0.5A/g的电流密度下,PCS-Au表现出225F/g的比容量,相较于纯多孔碳球(PCS)比容量提高了28.5%。使用螺旋季铵四氟硼酸盐和乙腈混合溶液(CF4301)作为电解液,组装成纽扣式对称型超级电容器后,PCS-Au在功率密度为1000W/kg的情况下能量密度为27.63Wh/kg。并且在1A/g电流密度下,经过20000圈循环稳定性测试后容量保持率为104.76%,性能无衰减,展现出很好的循环稳定性。精心设计的核壳结构与较大的比表面积,优异的导电性及丰富的孔结构降低了材料电阻并可以容纳更多的电解液,导致Au纳米颗粒@多孔碳球是一种极具应用价值的超级电容器电极材料。  相似文献   

9.
为了能够快速且大面积生长碳纳米纤维,研究碳纳米纤维的形成、转变及在各种物理、化学环境下的反应机理,应用等离子化学气相沉积(PECVD)方法,以CH4为反应气体,FeCl2为催化剂在玻璃衬底上生长碳纳米薄膜.应用扫描电镜(SEM)观察了碳纳米纤维薄膜的表面形貌,拉曼(Raman)光谱分析了碳纳米纤维的结构组成.结果表明,无催化剂时薄膜主要由纳米团簇构成,而催化作用下薄膜呈纤维状生长,纳米纤维为典型的碳纳米管石墨特征峰.在温度,气压,催化剂等反应条件中,FeCl2催化剂对碳纳米薄膜的取向生长起决定性作用,通过调节催化剂的浓度与分布,可有效改变碳纳米纤维的密度与分布.  相似文献   

10.
以甲烷为碳源,316号不锈钢网为催化剂,800℃下催化裂解甲烷,采用化学气相沉积法制备平均粒径为70~100nm纳米洋葱碳,通过酸洗-低温煅烧-磁选方法对洋葱碳进行纯化处理。X射线衍射、扫描电子显微镜、透射电子显微镜、红外吸收光谱、拉曼光谱和振动样品磁强计对样品的形貌结构、物相组成及磁性能进行表征分析。结果表明,酸洗-低温煅烧能有效去除初产物中裸露的催化剂颗粒及无定型碳,磁选则实现将内包有[Fe-Ni]磁性催化剂的洋葱碳与空心的洋葱碳分离,最终获得纯净的空心纳米洋葱碳。  相似文献   

11.
采用气凝胶与干凝胶两种催化剂载体通过化学气相淀积方法制备出螺旋状的碳纳米管.研究结果表明:气凝胶催化剂载体所制备出的螺旋碳纳米管和干凝胶载体所制备出的螺旋碳管相比较具有以下几个特点:(1)较好的石墨化程度,(2)较小的直径,(3)较好的螺旋形态,即较好的螺距一致性.分析结果认为气凝胶独特的介孔性质是导致气凝胶样品所制备的碳管具有以上特点的根本原因.另外,还提出催化剂颗粒周边上催化活性的各向异性将导致螺旋碳管的生长.  相似文献   

12.
以还原Fe粉和活性炭为原料, 通过热CVD法制备出微米级的空心碳球串珠结构. 利用TEM、EDS和多点氮吸附仪进行形貌、成分、比表面积及孔径分布表征. 串珠结构由f(1~2)μm的空心碳球串联而成, 长度可达十几微米. 碳球的壁厚为3~5nm的石墨球壳结构. 所制备产物的比表面积 S BET 达到306.523m2/g, 其孔径分布在中孔范围, 峰值位于3.761nm. 微米级空心碳球串珠结构的形成机理为含C的Fe微液滴在低温区凝聚并以石墨烯片层的方式析出C, 外延于Fe液滴形成石墨层, 与Fe液滴构成Fe/石墨层核壳结构, 石墨球壳的收缩趋势挤压Fe液滴沿轴向移动. 循环往复上述即形成空心串珠结构. 该结构在节能材料、药物、染料和催化剂等的载体材料、储氢、储能等方面可能具有良好的应用前景.  相似文献   

13.
采用三氟乙酸盐-金属有机沉积(TFA-MOD)技术在LaAlO3(001)单晶衬底上沉积YBa2Cu3O7-χ(YB-CO)导薄膜,研究了低温热处理条件(涂覆环境相对湿度和升温速度)对前驱膜形貌和YBCO超导膜的影响.从金相显微镜(OM)和扫描电镜(SEM)观察可以看出,高涂覆环境相对湿度是引起前驱膜出现宏观裂纹的主要原因,前驱膜分解速度过快会造成薄膜中出现褶皱和微观裂纹,前驱膜出现不完整性形貌将会影响YBCO薄膜的成相、形貌和性能.通过优化低温热处理务件,获得了表面形貌完整的前驱膜,避免了在高温成相阶段中出现杂相,提高了涂层导体的超导性能,77K时J.可超过2.0MA/cm2.  相似文献   

14.
通过电喷雾和二步热处理法制备得到无硬团聚的ZnO纳米微粒, 为制备无硬团聚氧化物纳米粉体提供了一种新方法. 试验采用添加适量PVP的Zn(CH3COO)2·2H2O的乙醇溶液作为电喷雾液体, 经过锥形喷雾得到均匀的微米级小液滴. 干燥后的喷雾产物先后在氮气炉和空气炉中分别600℃和400℃保温1h进行二步热处理. SEM、XRD测试结果表明, 使用该方法制备得到的ZnO纳米微粒粒度均匀, 结晶完整, 无硬团聚, 具有六角纤锌矿结构.  相似文献   

15.
16.
17.
以传热学理论为依据,全面分析蒸发器低温状态下管内外换热系数的影响因素,确立了热虹吸蒸发器低温传热的强化机理,并且进一步探讨了提高热虹吸蒸发器换热效率的途径.  相似文献   

18.
螺旋碳纤维自被发现以来,因其独特的三维螺旋结构引起了研究人员的关注.探究螺旋碳纤维的制备方法及其影响因素,对研究螺旋碳纤维的生长机理有着重要的作用.螺旋碳纤维是具有规则螺旋线圈或扭转结构的碳纤维,目前制备的螺旋碳纤维主要有单螺旋碳纤维和双螺旋碳纤维.碳纤维具有密度小、拉伸强度高、拉伸模量高、热导率好、导电以及电磁屏蔽波特性等特点,并且其力学性能、热性能及电性能都具有显著的各向异性.螺旋碳纤维不但具有与碳纤维类似的优异性能,并且所具有三维螺旋结构还赋予其良好的弹性、独特的电磁学以及生物催化等特性,在电子器件、手征催化、智能材料、隐身吸波材料、高性能和多功能复合材料等领域有着潜在的应用前景.然而,如何得到螺旋形貌规整的碳纤维、螺旋碳纤维的手性拆分和分散问题以及螺旋碳纤维的规模性可控制备一直是研究的难点和关键.近年来,研究者们一直对螺旋碳纤维的生长机理及生长动力进行探究,通过构建合理的生长模型表明促进剂以及催化剂的晶型和尺寸等对碳纤维的双螺旋结构有着关键影响.目前已能通过调控不同的制备条件制得形貌规整、结构均一的螺旋碳纤维,对其在各个领域的应用进行了一定的探索并取得了很大的成功.研究者们通过将螺旋碳纤维作为填料分散在复合材料中,利用螺旋碳纤维优异的性能,提高复合材料的综合性能或赋予复合材料的多功能性,以期实现复合材料在各个领域的应用.本文归纳了螺旋碳纤维的制备与生长机理的研究进展,分别对螺旋碳纤维的制备条件以及研究者们对生长机理模型的探究进行了介绍,总结了通过调控制备方法、碳源种类、反应温度、催化剂种类、促进剂以及碳源与氢气进气量比值等条件下所得到的螺旋碳纤维的差异,从而对螺旋碳纤维的生长机理进行推测和讨论.本文分析了现阶段螺旋碳纤维所面临的问题并对螺旋碳纤维未来的发展进行了展望,以期为螺旋碳纤维的进一步可控制备和产业化发展提供参考.  相似文献   

19.
分别以球墨铸铁和石墨为原料,采用机械球磨法成功制备了碳微球.采用XRD、SEM等测试手段对产物进行了形貌分析和结构表征,结果表明,所制备的碳微球产量高,并且以石墨为原料所得产物的颗粒大小均匀、分散性好.对碳微球进行了低温N_2吸附分析,结果表明,产物主要为介孔结构含有少量微孔,且具有较大的比表面积.  相似文献   

20.
罗妍钰  李才亮  陈国华 《材料导报》2018,32(9):1442-1451
螺旋碳纤维自被发现以来,因其独特的三维螺旋结构引起了研究人员的关注。探究螺旋碳纤维的制备方法及其影响因素,对研究螺旋碳纤维的生长机理有着重要的作用。螺旋碳纤维是具有规则螺旋线圈或扭转结构的碳纤维,目前制备的螺旋碳纤维主要有单螺旋碳纤维和双螺旋碳纤维。碳纤维具有密度小、拉伸强度高、拉伸模量高、热导率好、导电以及电磁屏蔽波特性等特点,并且其力学性能、热性能及电性能都具有显著的各向异性。螺旋碳纤维不但具有与碳纤维类似的优异性能,并且所具有三维螺旋结构还赋予其良好的弹性、独特的电磁学以及生物催化等特性,在电子器件、手征催化、智能材料、隐身吸波材料、高性能和多功能复合材料等领域有着潜在的应用前景。然而,如何得到螺旋形貌规整的碳纤维、螺旋碳纤维的手性拆分和分散问题以及螺旋碳纤维的规模性可控制备一直是研究的难点和关键。近年来,研究者们一直对螺旋碳纤维的生长机理及生长动力进行探究,通过构建合理的生长模型表明促进剂以及催化剂的晶型和尺寸等对碳纤维的双螺旋结构有着关键影响。目前已能通过调控不同的制备条件制得形貌规整、结构均一的螺旋碳纤维,对其在各个领域的应用进行了一定的探索并取得了很大的成功。研究者们通过将螺旋碳纤维作为填料分散在复合材料中,利用螺旋碳纤维优异的性能,提高复合材料的综合性能或赋予复合材料的多功能性,以期实现复合材料在各个领域的应用。本文归纳了螺旋碳纤维的制备与生长机理的研究进展,分别对螺旋碳纤维的制备条件以及研究者们对生长机理模型的探究进行了介绍,总结了通过调控制备方法、碳源种类、反应温度、催化剂种类、促进剂以及碳源与氢气进气量比值等条件下所得到的螺旋碳纤维的差异,从而对螺旋碳纤维的生长机理进行推测和讨论。本文分析了现阶段螺旋碳纤维所面临的问题并对螺旋碳纤维未来的发展进行了展望,以期为螺旋碳纤维的进一步可控制备和产业化发展提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号