共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous field monitoring of runoff and suspended sediment loads from a 30 ha, artificially‐drained, mixed‐agricultural catchment in Herefordshire, UK indicates field drains are the dominant pathway for the transfer of runoff and sediment to the stream. Surface runoff pathways draining 6·2% of the catchment area transported around 1% of the catchment sediment load, while subsurface runoff in field drains draining 26·5% of the catchment transported around 24% of the sediment load. The explanations offered here for the dominance of drainflow—the spatial limitation of surface runoff generation and low hillslope‐stream connectivity of surface runoff compared with subsurface runoff—are also likely to apply to other artificially‐drained lowland agricultural catchments in the UK. These catchments are usually on poorly‐drained soils, and land management can have a considerable effect on the operation of runoff pathways and the transfer of sediment from hillslope to stream. As a result, subsurface inputs may also dominate sediment transfers in other underdrained catchments. The focus on sediment and pollutant losses via surface runoff pathways means that pollution inputs from subsurface, preferential pathways have been unfairly neglected, and it may be more important to focus on subsurface sediment and sediment‐associated pollution inputs for mitigation rather than inputs from surface pathways. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
2.
Mountain headwater catchments in the semi‐arid Intermountain West are important sources of surface water because these high elevations receive more precipitation than neighboring lowlands. This study examined subsurface runoff in two hillslopes, one aspen dominated, the other conifer dominated, adjacent to a first order stream in snow‐driven northern Utah. Snow accumulation, soil moisture, trenchflow and streamflow were examined in hillslopes and their adjacent stream. Snow water equivalents (SWEs) were greater under aspen stands compared to conifer, the difference increasing with higher annual precipitation. Semi‐variograms of shallow spatial soil moisture patterns and transects of continuous soil moisture showed no increase in soil moisture downslope, suggesting the absence of subsurface flow in shallow (~12 cm) soil layers of either vegetation type. However, a clear threshold relationship between soil moisture and streamflow indicated hillslope–stream connectivity, deeper within the soil profile. Subsurface flow was detected at ~50 cm depth, which was sustained for longer in the conifer hillslope. Soil profiles under the two vegetation types varied, with deep aspen soils having greater water storage capacity than shallow rocky conifer soils. Though SWEs were less under the conifers, the soil profile had less water storage capacity and produced more subsurface lateral flow during the spring snowmelt. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
Brent T. Aulenbach Richard P. Hooper H. J. van Meerveld Douglas A. Burns James E. Freer James B. Shanley Thomas G. Huntington Jeffrey J. McDonnell Norman E. Peters 《水文研究》2021,35(4):e14127
The Panola Mountain Research Watershed (PMRW) is a 41-hectare forested catchment within the Piedmont Province of the Southeastern United States. Observations, experimentation, and numerical modelling have been conducted at Panola over the past 35 years. But to date, these studies have not been fully incorporated into a more comprehensive synthesis. Here we describe the evolving perceptual understanding of streamflow generation mechanisms at the PMRW. We show how the long-term study has enabled insights that were initially unforeseen but are also unachievable in short-term studies. In particular, we discuss how the accumulation of field evidence, detailed site characterization, and modelling enabled a priori hypotheses to be formed, later rejected, and then further refined through repeated field campaigns. The extensive characterization of the soil and bedrock provided robust process insights not otherwise achievable from hydrometric measurements and numerical modelling alone. We focus on two major aspects of streamflow generation: the role of hillslopes (and their connection to the riparian zone) and the role of catchment storage in controlling fluxes and transit times of water in the catchment. Finally, we present location-independent hypotheses based on our findings at PMRW and suggest ways to assess the representativeness of PMRW in the broader context of headwater watersheds. 相似文献
4.
Much debate has occurred in catchment hydrology regarding the connectivity of flow paths from upslope areas to catchment outlets. This study was conducted in two catchments, one with three upper branches, in a loess soil with a fragipan that fosters lateral flow and exhibits an extensive distribution of soil pipe collapse features. The study aimed to determine the connectivity of multiple soil pipe networks as well as determine pipe flow velocities during storm events. Fluorescein dye was injected directly into soil pipes at the upper most pipe collapse feature of four different hillslopes. Breakthrough curves (BTC) were determined by sampling multiple pipe collapse features downslope. The BTCs were used to determine the ‘average’ (centre of mass) and ‘maximum’ (first arrival) flow velocities. This study confirmed that these catchments contain individual continuous soil pipe networks that extend over 190 m and connect the upper most hillslopes areas with the catchment outlet. While the flow paths are continuous, the individual pipe networks consist of alternating reaches of subsurface flow through soil pipes and reaches of surface flow through gullies formed by pipe collapses. In addition, flow can be occurring both through the subsurface soil pipes simultaneous with surface flow generated by artesian flow from the soil pipes. The pipe flow velocities were as high as 0.3 m/s, which was in the range of streamflow velocities. These pipe flow velocities were also in the range of velocities observed in pinhole erosion tests suggesting that these large, mature soil pipes are still actively eroding. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
Precipitation runoff is a critical hillslope hydrological process for downslope streamflow and piedmont/floodplain recharge. Shimen hillslope micro‐catchment is strategically located in the central foothill region of Taihang Mountains, where runoff is crucial for water availability in the piedmont corridors and floodplains of north China. This study analyzes precipitation‐runoff processes in the Shimen hillslope micro‐catchment for 2006–2008 using locally designed runoff collection systems. The study shows that slope length is a critical factor, next only to precipitation, in terms of runoff yield. Regression analysis also shows that runoff is related positively to precipitation, and negatively to slope length. Soil mantle in the study area is generally thin and is therefore not as critical a runoff factor as slope length. The study shows a significant difference between overland and subsurface runoff. However, that between the 0–10 and 10–20 cm subsurfaces is insignificant. Runoff hardly occurs under light rains (<10 mm), but is clearly noticeable under moderate‐to‐rainstorm events. In the hillslope catchment, vertical infiltration (accounting for 42–84% of the precipitation) dominates runoff processes in subsurface soils and weathered granite gneiss bedrock. A weak lateral flow (at even the soil/bedrock interface) and the generally small runoff suggest strong infiltration loss via deep percolation. This is critical for groundwater recharge in the downslope piedmont corridors and floodplains. This may enhance water availability, ease water shortage, avert further environmental degradation, and reduce the risk of drought/flood in the event of extreme weather conditions in the catchment and the wider north China Plain. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
This paper outlines a conceptual and methodological approach to evaluating the risk of road derived runoff delivery, which is based on the principle of hydrological connectivity. Three different types of runoff delivery pathways are identified (stream crossings, gullied pathways and diffuse pathways) and the volume of runoff that may reach the stream through these pathways during a one in 10 year 30 minute event is estimated. The methodology is applied to three catchments of contrasting forest use, both plantation and native. Results show that degree of connectivity of a road depends on catchment characteristics such as the topography, road placement, drain spacing and road and drainage density. Maps outlining the distribution of different delivery pathways within a catchment are used to assess the potential for runoff connectivity. In one of the selected study catchments, the Albert River, greatest potential connectivity can be isolated to a single road. The upper part of this road crosses many tributaries resulting in high connectivity via stream crossings, whereas the lower part of the road is located within the valley bottom, where the majority of drains will contribute runoff during a one in 10 year event through diffuse overland flow. The presented methodology is also used to highlight hot‐spots in terms of runoff and sediment delivery through the creation of risk assessment maps, which allows for the evaluation of different procedures for road rehabilitation. Using examples from the Albert River catchment, we demonstrate that minimizing diffuse overland flow can generally be achieved by the placement of additional road drains, whereas at highly connected road segments the relocation of the road might be the only option. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
7.
We investigated the role of different hillslope units with different topographic characteristics on runoff generation processes based on field observations at two types of hillslopes (0·1 ha): a valley‐head (a convergent hillslope) and a side slope (a planar hillslope), as well as at three small catchments having two types of slopes with different drainage areas ranging from 1·9 to 49·7 ha in the Tanakami Mountains, central Japan. We found that the contribution of the hillslope unit type to small catchment runoff varied with the magnitude of rainfall. When the total amount of rainfall for a single storm event was < 35 mm, runoff in the small catchment was predominantly generated from the side slope. As the amount of rainfall increased (>35 mm), the valley‐head also began to contribute to the catchment runoff, adding to runoff from the side slope. Although the direct runoff from the valley‐head was greater than that from the side slope, the contribution from the side slope was quantitatively greater than that from the valley‐head due to the proportionally larger area occupied by the side slope in the small catchment. The storm runoff responses of the small catchments reflected the change in the runoff components of each hillslope unit as the amount of rainfall increased and rainfall patterns changed. However, similar runoff responses were found for the small catchments with different areas. The similarity of the runoff responses is attributable to overlay effects of different hillslope units and the similar composition ratios of the valley‐head and side slope in the catchments. This study suggests that the relative roles of the valley‐head and side slope are important in runoff generation and solute transport as the catchment size increases from a hillslope/headwater to a small catchment. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
We examined how and why dominant peak-flow runoff-generation mechanisms differ among neighbouring headwater catchments. We monitored runoff and groundwater levels and performed terrain analyses in a granitic second-order catchment and its four neighbouring subcatchments in the Kiryu Experimental Watershed in Japan. Our analysis of lag times from peak rainfall to peak runoff suggests differences in the dominant peak-flow runoff-generation mechanisms among the five catchments. For two of the three zero-order catchments, with few perennial groundwater bodies, subsurface flow from hillslopes was the dominant mechanism at some events. However, the dominant mechanisms were channel precipitation and riparian runoff at almost all events in first- and second-order catchments and in the third zero-order catchment, which has a large perennial groundwater body over a bedrock depression in the riparian zone. In this zero-order catchment, the quick-flow ratio was the smallest of the five catchments because subsurface flow from the hillslope was buffered at the riparian zone. These facts suggest that the channel length, riparian buffering, and hillslope connectivity were the factors governing the different dominant peak-flow runoff-generation mechanisms among the catchments. Riparian buffering was affected, not only by surface topography, but also by bedrock topography and bedrock groundwater (BGW) dynamics. Our findings indicate that both of BGW dynamics and topography are important for catchment classification, and the relative importance of topography increases with the change from baseflow to stormflow. Furthermore, mismatching between a geographic source and a flow path resulted in different catchment classifications depending on the approach. Therefore, multiple approaches during both baseflow and stormflow periods are necessary for catchment classification to apply information obtained from one headwater catchment to other headwater catchments within the same region. 相似文献
9.
Xiaofei Chen Juraj Parajka Borbála Széles Peter Strauss Günter Blöschl 《水文科学杂志》2020,65(13):2185-2195
ABSTRACT The objective of this study is to investigate the factors that control event runoff characteristics at the small catchment scale. The study area is the Hydrological Open Air Laboratory, Lower Austria. Event runoff coefficient (Rc), recession time constant (Tc) and peak discharge (Qp) are estimated from hourly discharge and precipitation data for 298 events in the period 2013–2015. The results show that the Rc and their variability tend to be largest for the tile drainages (mean Rc = 0.09) and the main outlet (mean Rc = 0.08) showing larger Rc in January/February and smaller Rc in July/August. Tc does not vary much between the systems and tends to be largest at the main outlet (mean Tc = 6.5 h) and smallest for the tile drainages (mean Tc = 4.5 h). Groundwater levels explain the temporal variability of Rc and Tc more than soil moisture or precipitation, suggesting a role of shallow flow paths. 相似文献
10.
The dominance of ‘old’ pre‐event water in headwater storm runoff has been recorded in numerous upland catchment studies; however, the mechanisms by which this pre‐event water enters the stream channel are poorly understood. Understanding these processes is fundamental to determining the controls on surface water quality and associated impacts on stream ecology. Previous studies in the upland forested catchment of the Afon Hafren (River Severn) at Plynlimon, mid‐Wales, identified an active bedrock groundwater system that was discharging into the stream channel during storm response. Detailed analysis showed that these discharges were small and could not account for the majority of pre‐event storm water response identified at this site; pre‐event storm runoff had to be sourced predominantly from further upstream. An intensive stream survey was used to determine the spatial nature of groundwater–surface water (GW–SW) interactions in the Hafren Catchment. Detailed physico‐chemical in‐stream profiling identified a marked change in water quality indicating a significant discrete point of bedrock groundwater discharge upstream of the Hafren Transect study site. The in‐stream profiling showed the importance of high spatial resolution sampling as a key to understanding processes of GW–SW interaction and how quick and cost‐effective measurements of specific electrical conductance of stream waters could be used to highlight in‐stream heterogeneity. This approach is recommended for use in headwater catchments for initial characterisation of the stream channel in order to better locate instrumentation and to determine more effective targeted sampling protocols in upland catchment research. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
A deeper knowledge of the hydrological response of semi-arid Mediterranean watersheds would be useful in the prediction of runoff production for assessing flood risks and planning flood mitigation works. This study was conducted to identify the runoff generation mechanisms and their controlling factors at the hillslope scale in a Mediterranean semi-arid watershed. Four zero-order microcatchments were selected to measure rainfall and runoff for a three-year period. Two groups of soil were differentiated with respect to the hydrological response. The fine textured, poorly permeable soils of low organic carbon content had a greater runoff coefficient (9%) and lower runoff threshold (3·6 mm) than more permeable, coarser textured soils of medium organic carbon content (<3%, and 8 mm, respectively). The influence of rainfall characteristics on the hydrological response was different. Rain intensity was the major rainfall parameter controlling the runoff response in the microcatchments on fine textured, low infiltrability soils with a poor plant cover, while total rainfall was more closely correlated with runoff in coarser textured, highly permeable soils with a denser plant cover. It can be concluded that there are two runoff generation mechanisms: (i) an infiltration-excess overland flow in the more degraded areas with low organic carbon content (<0·5%) and low infiltrability (>5 mm h−1); and (ii) a saturation-excess overland flow in the less degraded areas with a high organic carbon content (>2%), high infiltrability (>8 mm h−1) and covered by a dense plant cover (>50%). © 1998 John Wiley & Sons, Ltd. 相似文献
12.
ABSTRACTThe water balance dynamics and runoff components of a tropical forested catchment (46?km2) on the southwestern Pacific coast of Nicaragua were studied combining hydrometry, geological characterization and hydrochemical and isotopic tracers (three-component hydrograph separation). The climatic water balance was estimated for 2010/11, 2011/12 and 2012/13 with net values of 811?mm year-1, 782?mm year-1 and –447?mm year-1, respectively. Runoff components were studied at different spatial and temporal scales, demonstrating that different sources and temporal contributions are controlled by dominant landscape elements and antecedent rainfall. In forested sub-catchments, permeable soils, stratigraphy and steep slopes favour subsurface stormflow generation contributing 50% and 53% to total discharge. At catchment scale, landscape elements such as smooth slopes, wide valleys, deeper soils and water table allow groundwater recharge during rainfall events. Groundwater dominates the hydrograph (50% of total discharge) under dry prior conditions. However, low soil infiltration capacity generates a larger surface runoff component (42%) under wet prior conditions which dominates total discharge. Our results show that forested areas are important to reduce surface runoff and thus soil degradation, which is relevant for the design of water management plans.
Editor D. Koutsoyiannis Associate editor D. Gerten 相似文献
13.
14.
Xiong Xiao Fan Zhang Xiaoyan Li Chen Zeng Xiaonan Shi Huawu Wu Muhammad Dodo Jagirani Tao Che 《水文研究》2020,34(5):1104-1116
Global warming has leaded to permafrost degradation, with potential impacts on the runoff generation processes of permafrost influenced alpine meadow hillslope. Stable isotopes have the potential to trace the complex runoff generation processes. In this study, precipitation, hillslope surface and subsurface runoff, stream water, and mobile soil water (MSW) at different hillslope positions and depths were collected during the summer rainfall period to analyse the major flow pathway based on stable isotopic signatures. The results indicated that (a) compared with precipitation, the δ2H values of MSW showed little temporal variation but strong heterogeneity with enriched isotopic ratios at lower hillslope positions and in deeper soil layers. (b) The δ2H values of middle-slope surface runoff and shallow subsurface flow were similar to those of precipitation and MSW of the same soil layer, respectively. (c) Middle-slope shallow subsurface flow was the major flow pathway of the permafrost influenced alpine meadow hillslope, which turned into surface runoff at the riparian zone before contributing to the streamflow. (d) The slight variation of δ2H values in stream water was shown to be related to mixing processes of new water (precipitation, 2%) and old water (middle-slope shallow subsurface flow, 98%) in the highly transmissive shallow thawed soil layers. It was inferred that supra-permafrost water levels would be lowered to a less conductive, deeper soil layer under further warming and thawing permafrost, which would result in a declined streamflow and delayed runoff peak. This study explained the “rapid mobilization of old water” paradox in permafrost influenced alpine meadow hillslope and improved our understanding of permafrost hillslope hydrology in alpine regions. 相似文献
15.
Concentrated flow erosion is the dominant form of winter erosion in northern France. This study correlates the ephemeral rill and gully volumes measured in 20 cultivated catchments (4–95 ha) for three consecutive winters with the size of the potential runoff-contributing areas. These areas were identified by characterizing soil surface state through crust development stage, importance of surface wheel tracks and roughness grade. A single and significant relationship was found between the size of runoff-contributing areas, estimated by this criterion, and the rill and gully volumes. This identified the proportion of the catchment area occupied by fields with a degraded surface structure as the main factor controlling the variability of erosion in a context of concentrated flow erosion on cultivated land. The extension of degraded areas was shown to be controlled by dynamic interactions between weather, land occupation and soil physical properties. This criterion accounts for the uneven distribution of rainfall in space and time. Morphological factors, such as talweg length and slope, are believed to determine part of the residual variability. 相似文献
16.
Peter R. Robichaud 《地球表面变化过程与地形》2014,39(7):865-876
Post‐fire sediment yields can be up to three orders of magnitude greater than sediment yields in unburned forests. Much of the research on post‐fire erosion rates has been at small scales (100 m2 or less), and post‐fire sediment delivery rates across spatial scales have not been quantified in detail. We developed relationships for post‐fire bedload sediment delivery rates for spatial scales up to 117 ha using sediment yield data from six published studies and two recently established study sites. Sediment yields and sediment delivery ratios (SDRs; sediment delivered at the catchment scale divided by the sediment delivered from a plot nested within the catchment) were related to site factors including rainfall characteristics, area, length, and ground cover. Unit‐area sediment yields significantly decreased with increasing area in five of the six sites. The annual SDRs ranged from 0.0089 to 1.15 and these were more closely related to the ratio of the plot lengths than the ratio of plot areas. The developed statistical relationships will help quantify post‐fire sediment delivery rates across spatial scales in the interior western United States and develop process‐based scaling relationships. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA. 相似文献
17.
Jos‐Manuel Nicolau 《水文研究》2002,16(3):631-647
The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean–continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable—at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill‐sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
18.
Anthony R. Buda Peter J. A. Kleinman M. S. Srinivasan Ray B. Bryant Gary W. Feyereisen 《水文研究》2009,23(9):1295-1312
The variable source area (VSA) concept provides the underlying paradigm for managing phosphorus losses in runoff in the north‐eastern USA. This study sought to elucidate factors controlling runoff along two hillslopes with contrasting soils, including characterizing runoff generation mechanisms and hydrological connectivity. Runoff monitoring plots (2 m × 1 m) were established in various landscape positions. Footslope positions were characterized by the presence of a fragipan that contributed to seasonally perched water tables. In upslope positions without a fragipan, runoff was generated primarily via the infiltration‐excess (IE) mechanism (96% of events) and was largely disconnected from downslope runoff. Roughly 80% of total runoff originated from the north footslope landscape position via saturation‐excess (SE) (46% of events; 62% of runoff) and IE (54% of events; 38% of runoff) mechanisms. Runoff from the north hillslope was substantially greater than the south hillslope despite their proximity, and apparently was a function of the extent of fragipan representation. Results demonstrate the influence of subsurface soil properties (e.g. fragipan) on surface runoff generation in variable source area hydrology settings, which could be useful for improving the accuracy of existing runoff prediction tools. Published in 2009 by John Wiley & Sons, Ltd. 相似文献
19.
To evaluate the effects of hillslope topography on storm runoff in a weathered granite mountain, discharge rate, soil pore water pressures, and water chemistry were observed on two types of hillslope: a valley‐head (a concave hillslope) and a side slope (a planar hillslope). Hydrological responses on the valley‐head and side slope reflected their respective topographic characteristics and varied with the rainfall magnitude. During small rainfall events (<35 mm), runoff from the side slope occurred rapidly relative to the valley‐head. The valley‐head showed little response in storm runoff. As rainfall amounts increased (35–60 mm), the valley‐head yielded a higher flow relative to the side slope. For large rainfall events (>60 mm), runoff from both hillslopes increased with rainfall, although that from the valley‐head was larger than that from the side slope. The differences in the runoff responses were caused by differences in the roles of lower‐slope soils and the convergence of the hillslope. During small rainfall events, the side slope could store little water; in contrast, all rainwater could be stored in the soils at the valley‐head hollow. As the amount of rainfall increased, the subsurface saturated area of the valley‐head extended from the bottom to the upper portion of the slope, with the contributions of transient groundwater via lateral preferential flowpaths due to the high concentration of subsurface water. Conversely, saturated subsurface flow did not contribute to runoff responses, and the subsurface saturated area at the side slope did not extend to the upper slope for the same storm size. During large rainfall events, expansion of the subsurface saturated area was observed in both hillslopes. Thus, differences in the concentration of subsurface water, reflecting hillslope topography, may create differences in the extension of the subsurface saturated area, as well as variability in runoff responses. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
20.
This paper describes a two‐dimensional hydrodynamic model that characterizes surface runoff process resulting from a varying rainfall intensity event, on an infiltrating soil surface. The soil surface has spatially varied soil physical, hydraulic and microtopographic characteristics. Infiltration process is modelled with the Philip two‐term equation and the time before ponding approximated with the time compression algorithm. Vegetation is modelled as a dynamic component with the modified Gash model. The equation is solved with a modified second order Leapfrog explicit finite difference scheme with centred time and space derivatives. The model was validated with standard analytical solutions. Evaluation with results from field campaigns in the Volta Basin of West Africa during the 2002 rainfall season indicates good agreement, with r2 values ranging from 0·89 to 0·96. The developed method will be useful in studying the dynamics of surface runoff generation under complex microtopographic conditions, spatially varying soil hydraulic characteristics and temporally dynamic rainfall intensity, as found in many tropical catchments. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献