首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coronary stents improve resting blood flow and flow reserve in the presence of stenoses, but the impact of these devices on fluid dynamics during profound vasodilation is largely unknown. We tested the hypothesis that stent implantation affects adenosine-induced alterations in coronary hemodynamics and wall shear stress in anesthetized dogs (n = 6) instrumented for measurement of left anterior descending coronary artery (LAD) blood flow, velocity, diameter, and radius of curvature. Indexes of fluid dynamics and shear stress were determined before and after placement of a slotted-tube stent in the absence and presence of an adenosine infusion (1.0 mg/min). Adenosine increased blood flow, Reynolds (Re) and Dean numbers (De), and regional and oscillatory shear stress concomitant with reductions in LAD vascular resistance and segmental compliance before stent implantation. Increases in LAD blood flow, Re, De, and indexes of shear stress were observed after stent deployment (P < 0.05). Stent implantation reduced LAD segmental compliance to zero and potentiated increases in segmental and coronary vascular resistance during adenosine. Adenosine-induced increases in coronary blood flow and reserve, Re, De, and regional and oscillatory shear stress were attenuated after the stent was implanted. The results indicate that stent implantation blunts alterations in fluid dynamics during coronary vasodilation in vivo.  相似文献   

2.
Coronary flow reserve (CFR) and fractional flow reserve (FFR) are important physiological indexes for coronary disease. The purpose of this study was to validate the CFR and FFR measurement techniques using only angiographic image data. Fifteen swine were instrumented with an ultrasound flow probe on the left anterior descending artery (LAD). Microspheres were gradually injected into the LAD to create microvascular disruption. An occluder was used to produce stenosis. Contrast material injections were made into the left coronary artery during image acquisition. Volumetric blood flow from the flow probe (Q(q)) was continuously recorded. Angiography-based blood flow (Q(a)) was calculated by using a time-density curve based on the first-pass analysis technique. Flow probe-based CFR (CFR(q)) and angiography-based CFR (CFR(a)) were calculated as the ratio of hyperemic to baseline flow using Q(q) and Q(a), respectively. Relative angiographic FFR (relative FFR(a)) was calculated as the ratio of the normalized Q(a) in LAD to the left circumflex artery (LC(X)) during hyperemia. Flow probe-based FFR (FFR(q)) was measured from the ratio of hyperemic flow with and without disease. CFR(a) showed a strong correlation with the gold standard CFR(q) (CFR(a) = 0.91 CFR(q) + 0.30; r = 0.90; P < 0.0001). Relative FFR(a) correlated linearly with FFR(q) (relative FFR(a) = 0.86 FFR(q) + 0.05; r = 0.90; P < 0.0001). The quantification of CFR and relative FFR(a) using angiographic image data was validated in a swine model. This angiographic technique can potentially be used for coronary physiological assessment during routine cardiac catheterization.  相似文献   

3.
Effects of exercise training on coronary transport capacity   总被引:3,自引:0,他引:3  
Coronary transport capacity was estimated in eight sedentary control and eight exercise-trained anesthetized dogs by determining the differences between base line and the highest coronary blood flow and permeability-surface area product (PS) obtained during maximal adenosine vasodilation with coronary perfusion pressure constant. The anterior descending branch of the left coronary artery was cannulated and pump-perfused under constant-pressure conditions (approximately equal to 100 Torr) while aortic, central venous, and coronary perfusion pressures, heart rate, electrocardiogram, and coronary flow were monitored. Myocardial extraction and PS of 51Cr-labeled ethylenediaminetetraacetic acid were determined with the single-injection indicator-diffusion method. The efficacy of the 16 +/- 1 wk exercise training program was shown by significant increases in the succinate dehydrogenase activities of the gastrocnemius, gluteus medialis, and long head of triceps brachii muscles. There were no differences between control and trained dogs for either resting coronary blood flow or PS. During maximal vasodilation with adenosine, the trained dogs had significantly lower perfusion pressures with constant flow and, with constant-pressure vasodilation, greater coronary blood flow and PS. It is concluded that exercise training in dogs induces an increased coronary transport capacity that includes increases in coronary blood flow capacity (26% of control) and capillary diffusion capacity (82% of control).  相似文献   

4.
Apolipoprotein E-knockout (ApoE-KO) mice develop advanced atherosclerotic lesions by 1 yr of age and have been well characterized pathologically and morphologically, but little is known regarding their cardiovascular physiology and hemodynamics. We used noninvasive Doppler ultrasound to measure aortic and mitral blood velocity and aortic pulse-wave velocity in 13-mo-old ApoE-KO and wild-type (WT) mice anesthetized with isoflurane. In other mice from the same colony, we measured systolic blood pressure, body weight, heart weight, cholesterol, and hematocrit. Heart rate and blood pressure were comparable (P = not significant) between ApoE-KO and WT mice, but significant decreases (P < 0.001) were found in body weight (-22%) and hematocrit (-11%), and significant increases were found in heart weight (+23%), aortic velocity (+60%), mitral velocity (+81%) (all P < 0.001), and pulse-wave velocity (+13%, P < 0.05). We also found inflections in the aortic arch velocity signal consistent with enhanced peripheral wave reflection. Thus ApoE-KO mice have phenotypic alterations in indexes of peripheral vascular resistance and compliance and significantly elevated cardiac outflow velocities and heart weight-to-body weight ratios.  相似文献   

5.
Exercise training increases coronary transport reserve in miniature swine   总被引:4,自引:0,他引:4  
Female yucatan miniature swine were trained on a treadmill (ET) or were cage confined (C) for 16-22 wk. The ET pigs had increased exercise tolerance, heart weight-to-body weight ratio, and skeletal muscle oxidative capacity. After anesthesia the left anterior descending coronary artery was cannulated and pump perfused with blood while aortic, central venous, and coronary perfusion pressures, electrocardiogram, heart rate, and coronary blood flow were monitored. Capillary permeability-surface area product (PS) for EDTA was determined with the single-injection indicator-diffusion method by use of an organ model based on the Sangren-Sheppard equations for capillary transport. Coronary blood flow (CBF) and PS were compared before and during maximal adenosine vasodilation with coronary perfusion pressures at 120 mmHg. Results indicate that there were no differences in base-line CBF or PS between C and ET groups. alpha-Receptor blockade with phentolamine and/or prazosin, before adenosine vasodilation, produced increases in PS in C pigs but had little effect in ET pigs. During maximal vasodilation with adenosine, ET pigs had greater CBF (447 +/- 24 vs. 366 +/- 27 ml.min-1.100 g-1) and greater PS (83 +/- 9 vs. 55 +/- 7 ml.min-1.100 g-1) than the C group. It is concluded that ET induces an increased coronary transport capacity in miniature swine that includes a 22% increase in blood flow capacity and a 51% increase in capillary exchange capacity.  相似文献   

6.
7.
The objective of this study was to apply transthoracic Doppler echocardiography (TTDE) in mice to study coronary flow reserve (CFR), an index of coronary microvascular function, in mild and severe forms of experimental viral myocarditis. Regarding methodology, BALB/c mice were infected with cardiotropic coxsackieviruses causing either a mild (Nancy strain) or a severe (Woodruff strain) myocarditis. Left ventricular dimensions, fractional shortening, and CFR (ratio of left coronary artery flow velocity during maximal adenosine-induced vasodilatation to rest) were measured by TTDE before infection and again 1 or 2 wk after infection. As a result, the resting flow velocity did not change after infection. In contrast, CFR reduced significantly 1 wk after infection with either virus variant [from 2.5 (SD 0.3) to 1.4 (SD 0.1) in severe and from 2.4 (SD 0.4) to 2.1 (SD 0.3) in mild myocarditis], being significantly lower in the severe than mild myocarditis. CFR remained low in severe myocarditis 2 wk after infection. Fractional shortening decreased to the same levels 1 wk after infection with either virus variant [from 0.54 (SD 0.02) to 0.43 (SD 0.03) in severe and from 0.51 (SD 0.03) to 0.44 (SD 0.02) in mild myocarditis, P < 0.05]. However, 2 wk after infection, mice with severe myocarditis had enlarged left ventricles and lower fractional shortening [0.31 (SD 0.03)] than mice with mild myocarditis [0.47 (SD 0.02), P < 0.01]. In conclusion, CFR measured with TTDE is reduced in coxsackievirus myocarditis in mice. Low CFR is associated with progressive heart failure, indicating that dysfunction of coronary microcirculation is a determinant of poor outcome in viral myocarditis.  相似文献   

8.
9.
The purpose of this study is to evaluate the feasibility of percutaneous antegrade myocardial gene transfer (PAMGT). A consistent and safe technique for in vivo gene transfer is required for clinical application of myocardial gene therapy. PAMGT with concomitant coronary venous blockade was performed in 12 swine. The myocardium was preconditioned with 1 min of occlusion of the left anterior descending and left circumflex arteries. The anterior interventricular vein was occluded during left anterior descending artery delivery, and the great cardiac vein at the entrance of the middle cardiac vein was occluded during left circumflex artery delivery. With arterial and venous balloons inflated (3 min) and after adenosine (25 mug) injection, PAMGT was performed by antegrade injection of an adenoviral solution (1 ml of 10(11) plaque-forming units in each coronary artery) carrying beta-galactosidase or saline through the center lumen of the angioplasty balloon. In one set of animals, PAMGT was performed with selective coronary vein blockade (n = 9); in another set of animals, PAMGT was performed without coronary vein blockade (n = 5). At 1 wk after gene delivery, the animals were killed. Quantitative beta-galactosidase analysis was performed in the left and right ventricular walls. PAMGT was successfully performed in all animals with and without concomitant occlusion of the coronary veins. Quantitative beta-galactosidase analysis showed that PAMGT with coronary blockade was superior to PAMGT without coronary blockade. beta-Galactosidase activity increased significantly in the beta-galactosidase group compared with the saline group: 1.34 +/- 0.18 vs. 0.81 +/- 0.1 ng (P 相似文献   

10.
It was previously shown that red blood cells release ATP when blood oxygen tension decreases. ATP acts on microvascular endothelial cells to produce a retrograde conducted vasodilation (presumably via gap junctions) to the upstream arteriole. These observations form the basis for an ATP hypothesis of local metabolic control of coronary blood flow due to vasodilation in microvascular units where myocardial oxygen extraction is high. Dogs (n = 10) were instrumented with catheters in the aorta and coronary sinus, and a flow transducer was placed around the circumflex coronary artery. Arterial and coronary venous plasma ATP concentrations were measured at rest and during three levels of treadmill exercise by using a luciferin-luciferase assay. During exercise, myocardial oxygen consumption increased approximately 3.2-fold, coronary blood flow increased approximately 2.7-fold, and coronary venous oxygen tension decreased from 19 to 12.9 mmHg. Coronary venous plasma ATP concentration increased significantly from 31.1 to 51.2 nM (P < 0.01) during exercise. Coronary blood flow increased linearly with coronary venous ATP concentration (P < 0.01). Coronary venous-arterial plasma ATP concentration difference increased significantly during exercise (P < 0.05). The data support the hypothesis that ATP is one of the factors controlling coronary blood flow during exercise.  相似文献   

11.
The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P < 0.05) relative to WKY cardiomyocytes at 20-24 wk. ET binding-site density was twofold greater in SHR than WKY cells at 12 wk (P < 0.05) but normalized at 20 wk. ET(B) receptors were detected on SHR cardiomyocytes as early as 8 wk and their affinity increased progressively with age (P < 0.05), whereas ET(B) receptors were not detected on WKY cells until 20 wk. ET-1 stimulated protein synthesis with similar maximum responses between strains (21-30%), in contrast with sarafotoxin 6c, which stimulated protein synthesis in SHR (13-20%) but not WKY cells at 12-20 wk. In SHR but not WKY cells, the ET(B) receptor-selective ligand A-192621 increased protein synthesis progressively with the development of LVH (15% maximum effect). In conclusion, the presence of ET(B) receptors (8-12 wk) coupled with functional responsiveness of SHR cells but not WKY cells to sarafotoxin 6c at 12 wk supports the involvement of ET(B) receptors before the onset of cardiomyocyte hypertrophy, whereas altered ET(B) receptor characteristics during active hypertrophy (16-24 wk) indicate that ET(B) receptor mechanisms may also contribute to disease progression.  相似文献   

12.
After myocardial infarction (MI), there is progressive left ventricular (LV) remodeling and impaired exercise capacity. We tested the hypothesis that LV remodeling results in structural and functional changes that determine exercise impairment post-MI. Rats underwent coronary artery ligation (n = 12) or sham (n = 11) surgery followed by serial exercise tests and echocardiography for 16 wk post-MI. LV pressure-volume relationships were determined using a blood-perfused Langendorff preparation. Exercise capacity was 60% of shams immediately post-MI (P < 0.05) followed by a recovery to near normal during weeks 5-8. Thereafter, there was a progressive decline in exercise capacity to +/-40% of shams (P < 0.01). At both 8 and 16 wk post-MI, fractional shortening (FS) was reduced and end-diastolic diameter (EDD) was increased (P < 0.01). However, neither FS nor EDD correlated with exercise at 8 or 16 wk (r(2) < 0.12, P > 0.30). LV septal wall thickness was increased at both 8 (P = 0.17 vs. shams) and 16 wk (P = 0.035 vs. shams) post-MI and correlated with exercise at both times (r(2) >/= 0.50 and P 相似文献   

13.
A new model of chronic cardiac ischemia in rabbits.   总被引:4,自引:0,他引:4  
Chronic cardiac ischemia has mainly been studied in large species such as pigs or dogs. Little research has been performed using small species such as rabbits. In the present study, 1-3 wk after implantation of a novel device (ameroid) on the circumflex coronary artery of New Zealand White rabbits, vessel patency was evaluated by coronary angiography, corrosion cast, and radiolabeled microspheres. Coronary angiograms showed, after 21 days, either total occlusion or severe stenosis in seven of eight arteries, which was confirmed by corrosion casts. The ameroid group had less blood flow in the epicardial (-62%) and endocardial (-54%) layers of the ischemic area compared with sham-operated rabbits (P < 0.05). Blood flow increased in the ischemic area compared with day 0 during acute occlusion, suggesting that progressive coronary occlusion initiated the growth of de novo collateral vessels. Thus we have developed a new model of chronic cardiac ischemia in rabbits with documented progressive coronary stenosis and occlusion that is suitable to test various therapeutic angiogenesis strategies.  相似文献   

14.
The purpose of this investigation was to quantitatively evaluate the role of adenosine in coronary exercise hyperemia. Dogs (n = 10) were chronically instrumented with catheters in the aorta and coronary sinus, and a flow probe on the circumflex coronary artery. Cardiac interstitial adenosine concentration was estimated from arterial and coronary venous plasma concentrations using a previously tested mathematical model. Coronary blood flow, myocardial oxygen consumption, heart rate, and aortic pressure were measured at rest and during graded treadmill exercise with and without adenosine receptor blockade with either 8-phenyltheophylline (8-PT) or 8-p-sulfophenyltheophylline (8-PST). In control vehicle dogs, exercise increased myocardial oxygen consumption 4.2-fold, coronary blood flow 3.8-fold, and heart rate 2.5-fold, whereas mean aortic pressure was unchanged. Coronary venous plasma adenosine concentration was little changed with exercise, and the estimated interstitial adenosine concentration remained well below the threshold for coronary vasodilation. Adenosine receptor blockade did not significantly alter myocardial oxygen consumption or coronary blood flow at rest or during exercise. Coronary venous and estimated interstitial adenosine concentration did not increase to overcome the receptor blockade with either 8-PT or 8-PST as would be predicted if adenosine were part of a high-gain, negative-feedback, local metabolic control mechanism. These results demonstrate that adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise.  相似文献   

15.
This study compared the effects of rosuvastatin on left ventricular infarct size in mice after permanent coronary occlusion vs. 60 min of ischemia followed by 24 h of reperfusion. Statins can inhibit neutrophil adhesion, increase nitric oxide synthase (NOS) expression, and mobilize progenitor stem cells after ischemic injury. Mice received blinded and randomized administration of rosuvastatin (20 mg.kg(-1).day(-1)) or saline from 2 days before surgery until death. After 60 min of ischemia with reperfusion, infarct size was reduced by 18% (P = 0.03) in mice randomized to receive rosuvastatin (n = 18) vs. saline (n = 22) but was similar after permanent occlusion in rosuvastatin (n = 17) and saline (n = 20) groups (P = not significant). Myocardial infarct size after permanent left anterior descending coronary artery occlusion (n = 6) tended to be greater in NOS3-deficient mice than in the wild-type saline group (33 +/- 4 vs. 23 +/- 2%, P = 0.08). Infarct size in NOS3-deficient mice was not modified by treatment with rosuvastatin (34 +/- 5%, n = 6, P = not significant vs. NOS3-deficient saline group). After 60 min of ischemia-reperfusion, neutrophil infiltration was similar in rosuvastatin and saline groups as was the percentage of CD34(+), Sca-1(+), and c-Kit(+) cells. Left ventricular NOS3 mRNA and protein levels were unchanged by rosuvastatin. Rosuvastatin reduces infarct size after 60 min of ischemia-reperfusion but not after permanent coronary occlusion, suggesting a potential anti-inflammatory effect. Although we were unable to demonstrate that the myocardial protection was due to an effect on neutrophil infiltration, stem cell mobilization, or induction of NOS3, these data suggest that rosuvastatin may be particularly beneficial in myocardial protection after ischemia-reperfusion injury.  相似文献   

16.
Chronic inhibition of phosphodiesterase-5 with sildenafil immediately after permanent occlusion of the left anterior descending coronary artery was shown to limit ischemic heart failure (HF) in mice. To mimic a more clinical scenario, we postulated that treatment with sildenafil beginning at 3 days post-myocardial infarction (MI) would also reduce HF progression through the inhibition of the RhoA/Rho-kinase pathway. Adult male ICR mice with fractional shortening < 25% at day 3 following permanent left anterior descending coronary artery ligation were continuously treated with either saline (volume matched, ip, 2 times/day) or sildenafil (21 mg/kg, ip, 2 times/day) for 25 days. Echocardiography showed fractional shortening preservation and less left ventricular end-diastolic dilatation with sildenafil treatment compared with saline treatment at 7 and 28 days post-MI (P < 0.05). Both fibrosis and apoptosis, determined by Masson's trichrome and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL), respectively, were attenuated in the sildenafil-treated mice (P < 0.05 vs. saline). Western blot analysis showed enchanced Bcl-2-to-Bax ratio with sildenafil treatment (P < 0.05 vs. saline). Activity assay showed sildenafil-mediated PKG activation 1 day after treatment (P < 0.05 vs. sham and saline). PKG activation was associated with sildenafil-mediated inhibition of Rho kinase (P < 0.05) compared with saline treatment, whereas PKG inhibition with KT-5823 abolished this inhibitory effect of sildenafil. In conclusion, for the first time, our findings show that chronic sildenafil treatment, initiated at 3 days post-MI, attenuates left ventricular dysfunction independent of its infarct-sparing effect, and this cardioprotection involves the inhibition of the RhoA/Rho-kinase pathway. Sildenafil may be a promising therapeutic tool for advanced HF in patients.  相似文献   

17.
Statin drugs can upregulate endothelial nitric oxide (NO) synthase (eNOS) in isolated endothelial cells independent of lipid-lowering effects. We investigated the effect of short-term simvastatin administration on coronary vascular eNOS and NO production in conscious dogs and canine tissues. Mongrel dogs were instrumented under general anesthesia to measure coronary blood flow (CBF). Simvastatin (20 mg. kg(-1). day(-1)) was administered orally for 2 wk; afterward, resting CBF was found to be higher compared with control (P < 0.05) and veratrine- (activator of reflex cholinergic NO-dependent coronary vasodilation) and ACh-mediated coronary vasodilation were enhanced (P < 0.05). Response to endothelium-independent vasodilators, adenosine and nitroglycerin, was not potentiated. After simvastatin administration, plasma nitrate and nitrite (NO(x)) levels increased from 5.22 +/- 1.2 to 7. 79 +/- 1.3 microM (P < 0.05); baseline and agonist-stimulated NO production in isolated coronary microvessels were augmented (P < 0.05); resting in vivo myocardial oxygen consumption (MVO(2)) decreased from 6.8 +/- 0.6 to 5.9 +/- 0.4 ml/min (P < 0.05); NO-dependent regulation of MVO(2) in response to NO agonists was augmented in isolated myocardial segments (P < 0.05); and eNOS protein increased 29% and eNOS mRNA decreased 50% in aortas and coronary vascular endothelium. Short-term administration of simvastatin in dogs increases coronary endothelial NO production to enhance NO-dependent coronary vasodilation and NO-mediated regulation of MVO(2).  相似文献   

18.
It has not been possible to measure wave speed in the human coronary artery, because the vessel is too short for the conventional two-point measurement technique used in the aorta. We present a new method derived from wave intensity analysis, which allows derivation of wave speed at a single point. We apply this method in the aorta and then use it to derive wave speed in the human coronary artery for the first time. We measured simultaneous pressure and Doppler velocity with intracoronary wires at the left main stem, left anterior descending and circumflex arteries, and aorta in 14 subjects after a normal coronary arteriogram. Then, in 10 subjects, serial measurements were made along the aorta before and after intracoronary isosorbide dinitrate. Wave speed was derived by two methods in the aorta: 1) the two-site distance/time method (foot-to-foot delay of pressure waveforms) and 2) a new single-point method using simultaneous pressure and velocity measurements. Coronary wave speed was derived by the single-point method. Wave speed derived by the two methods correlated well (r = 0.72, P < 0.05). Coronary wave speed correlated with aortic wave speed (r = 0.72, P = 0.002). After nitrate administration, coronary wave speed fell by 43%: from 16.4 m/s (95% confidence interval 12.6-20.1) to 9.3 m/s (95% confidence interval 6.5-12.0, P < 0.001). This single-point method allows determination of wave speed in the human coronary artery. Aortic wave speed is correlated to coronary wave speed. Finally, this technique detects the prompt fall in coronary artery wave speed with isosorbide dinitrate.  相似文献   

19.
Uridine adenosine tetraphosphate (Up4A) exerts potent relaxation in porcine coronary arteries that is reduced following myocardial infarction, suggesting a crucial role for Up4A in the regulation of coronary flow (CF) in cardiovascular disorders. We evaluated the vasoactive effects of Up4A on CF in atherosclerosis using ApoE knockout (KO) mice ex vivo and in vivo. Functional studies were conducted in isolated mouse hearts using the Langendorff technique. Immunofluorescence was performed to assess purinergic P2X1 receptor (P2X1R) expression in isolated mouse coronary arteries. In vivo effects of Up4A on coronary blood flow (CBF) were assessed using ultrasound. Infusion of Up4A (10?9–10?5 M) into isolated mouse hearts resulted in a concentration-dependent reduction in CF in WT and ApoE KO mice to a similar extent; this effect was exacerbated in ApoE KO mice fed a high-fat diet (HFD). The P2X1R antagonist MRS2159 restored Up4A-mediated decreases in CF more so in ApoE KO + HFD than ApoE KO mice. The smooth muscle to endothelial cell ratio of coronary P2X1R expression was greater in ApoE KO + HFD than ApoE KO or WT mice, suggesting a net vasoconstrictor potential of P2X1R in ApoE KO + HFD mice. In contrast, Up4A (1.6 mg/kg) increased CBF to a similar extent among the three groups. In conclusion, Up4A decreases CF more in ApoE KO + HFD mice, likely through a net upregulation of vasoconstrictor P2X1R. In contrast, Up4A increases CBF in vivo regardless of the atherosclerotic model.  相似文献   

20.
Cannabidiol (CBD) is a major, nonpsychoactive Cannabis constituent with anti-inflammatory activity mediated by enhancing adenosine signaling. Inasmuch as adenosine receptors are promising pharmaceutical targets for ischemic heart diseases, we tested the effect of CBD on ischemic rat hearts. For the in vivo studies, the left anterior descending coronary artery was transiently ligated for 30 min, and the rats were treated for 7 days with CBD (5 mg/kg ip) or vehicle. Cardiac function was studied by echocardiography. Infarcts were examined morphometrically and histologically. For ex vivo evaluation, CBD was administered 24 and 1 h before the animals were killed, and hearts were harvested for physiological measurements. In vivo studies showed preservation of shortening fraction in CBD-treated animals: from 48 +/- 8 to 39 +/- 8% and from 44 +/- 5 to 32 +/- 9% in CBD-treated and control rats, respectively (n = 14, P < 0.05). Infarct size was reduced by 66% in CBD-treated animals, despite nearly identical areas at risk (9.6 +/- 3.9 and 28.2 +/- 7.0% in CBD and controls, respectively, P < 0.001) and granulation tissue proportion as assessed qualitatively. Infarcts in CBD-treated animals were associated with reduced myocardial inflammation and reduced IL-6 levels (254 +/- 22 and 2,812 +/- 500 pg/ml in CBD and control rats, respectively, P < 0.01). In isolated hearts, no significant difference in infarct size, left ventricular developed pressures during ischemia and reperfusion, or coronary flow could be detected between CBD-treated and control hearts. Our study shows that CBD induces a substantial in vivo cardioprotective effect from ischemia that is not observed ex vivo. Inasmuch as CBD has previously been administered to humans without causing side effects, it may represent a promising novel treatment for myocardial ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号