首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
报道了880 nm LD抽运下,YVO4-Nd:YVO4键合晶体1342 nm激光输出特性.880 nm LD抽运下,YVO4-Nd:YVO4键合晶体在抽运光功率为18.74W时获得了8.87W的激光输出,光-光转换效率为47.3%,斜效率为52.1%.并与相同实验条件下880 nm LD抽运Nd:YVO4单一晶体l 342 nm激光器、808nm LD抽运YVO4-Nd:YVO4键合晶体1342 nm激光器、808 nm LD抽运Nd:YVO4单一晶体1342 nm激光器的实验结果进行了比较.利用有限元分析方法,数值模拟了以上几种情况下晶体内的温度分布,晶体内的温度梯度较小时,得到的激光器斜效率较高.  相似文献   

2.
LD抽运单块非平面环形腔单频激光器   总被引:4,自引:1,他引:3  
报道了激光二极管(LD)抽运单块非平面环形腔(NPRO)Nd:YAG激光器和LD抽运单块键合晶体非平面环形腔Tm:YAG激光器实现单频运转的实验结果.采用LD抽运的单块非平面环形腔Nd:YAG激光器,分别获得了1.876 W和616 mW的1064 nm和1319 nm的单频激光输出,对应的光一光转换效率分别为53.4%和19.2%.采用LD抽运单块键合晶体非平面环形腔Tm:YAG激光器,获得了878 mW的2μm单频激光输出,光一光转换效率为18.8%.为了减小2 μm激光器的热效应,采用一种新型的YAG+Tm:YAG+YAG键合单块非平面晶体结构形式并取得了良好的效果.  相似文献   

3.
激光二极管端面抽运Tm:YAG激光器   总被引:2,自引:2,他引:2  
研究了输出波长为2.018μm的激光二极管(LD)抽运Tm∶YAG激光器。通过准三能级系统的速率方程,分析了激光系统的抽运阈值和斜率效率。同时,利用ABCD矩阵分析了平凹腔和双凹腔的腔型稳定条件和模式匹配情况。实验时采用785 nm的光纤耦合半导体激光器为抽运源,当采用平凹直腔,Tm∶YAG晶体为5℃时,获得了4.04 W的连续激光输出,激光器斜率效率为35.4%,光-光转换效率为26.4%。实验比较了不同晶体温度下Tm∶YAG激光器的阈值、功率和效率。实验结果与理论分析基本吻合。此外,还研究了激光器腔型对激光输出功率和效率的影响。  相似文献   

4.
为了研究泵浦带宽和波长飘移对全固态激光器的影响,进行了光谱分析和热效应分析,该分析是在准三能级Tm:YAG激光器上进行的。提出光谱模型和晶体热模型,用来研究不同泵浦带宽下Tm激光器的效率和热效应。在Tm激光实验中,结构紧凑、高效率的键合Tm激光器得到验证,中心波长输出在2 013.2 nm。这一激光器的泵浦源是0.1 nm窄线宽的光纤耦合激光二极管,其输出波长是784.9 nm。最大输出功率为7.96 W,斜率效率为62.5%,光-光转换效率为53.3%。当耦合透过率为3%时,激光功率从1.87 W增大到14.93 W,激光波长从2 013.25~2 014.53 nm飘移。当耦合透过率为5%时,输出波长从2 013.91 nm飘移到2 014.26 nm。尽管晶体的最高温度会稍有上升,但0.1 nm窄带宽泵浦可以有效提高激发效率,因此具有更高的激光效率。通过综合考虑泵浦带宽和波长飘移以及增益介质的光谱分布,该研究可以扩展到其他固体激光器来选择泵浦源,有助于实现高效的激光系统。  相似文献   

5.
激光二极管双端抽运Tm:YAP激光器   总被引:4,自引:1,他引:3  
简要分析了掺铥铝酸钇(Tm∶YAP)晶体的能级结构及吸收光谱特性,报道了一种室温条件下的激光二极管(LD)双端面抽运Tm∶YAP激光器。激光器输出的中心波长为1996 nm,2μm连续激光输出功率为40.7 W,光-光转换效率为30.4%,斜率效率为41.1%。经过声光(AO)调制后获得重复频率为10 kHz的脉冲激光输出,输出功率为34.6 W,激光脉冲宽度为92.08 ns,光-光转换效率为25.9%,斜率效率为32.9%。光束发散角x方向为11.6 mrad,y方向为12.2 mrad。  相似文献   

6.
报道了一种激光二极管(LD)双末端抽运Tm:YLF激光器,在1.9 μm处获得了连续波(CW)输出。1.9 μm激光可用于抽运Ho晶体获得2 μm激光。在理论上,分析了掺Tm3+激光器的运转机制和能量转换损耗,计算出Tm:YLF激光器在理论上的斜率效率达到50%。在实验上,抽运源使用工作波长为792 nm的光纤耦合激光二极管,抽运光均分为两束双端抽运Tm:YLF晶体,两块晶体串接在折叠腔内。Tm:YLF 晶体的掺杂原子数分数为4%, 尺寸为3 mm×3 mm×12 mm。测量了输出镜在不同透射率情况下激光器的输出激光波长,当输出镜透射率T=26%时,在1.9μm处获得20.1 W的连续波激光输出,相应的抽运功率为75 W,阈值抽运功率为9 W,斜率效率为34%,光-光转换效率为27%。  相似文献   

7.
激光二极管(LD)大功率端面抽运固体激光器(DPSSL)中的热效应会影响到激光器的各个方面,使得激光输出效率下降,光束质量变坏、谐振腔的稳定性变差等.采用新波段879 nm取代808 nm,将粒子直接激励到激光发射上能级,降低无辐射弛豫过程产生的热量,有效地减少热的产生,降低激光二极管端面抽运Nd:GdVO4晶体的热效应,获得更高性能的激光输出.在相同条件下通过879 nm激光二极管直接端面抽运及808 nm激光二极管间接端面抽运Nd:GdVO4激光器的实验比较,结果表明,在较高抽运功率下采用879 nm抽运提高了Nd:GdVO4激光器的激光输出性能.最后采用879 nm激光二极管端面抽运Nd:GdVO4晶体棒直线腔方案,在16.3 W的吸收抽运功率下,获得最大连续输出功率9.8 W的TEM00模1063 nm激光输出,对吸收抽运光的光-光转换效率高达60.1%,斜率效率达68.4%.  相似文献   

8.
报道了采用双抽运头串联的对称直通腔结构及KTP晶体腔内倍频实现高功率红光激光输出的实验结果.在激光二极管(LD)抽运功率为1250 W,声光Q开关工作重复频率为10 kHz条件下,获得平均功率为83 W,波长为659.5 nm的红光激光输出,光-光转换效率为6.7%,斜率效率为17%.激光器采用平-平腔结构,每个抽运头使用了一个连续运转的高功率激光二极管侧面抽运组件,组件内由35只20 W的激光二极管呈五边形阵列分布抽运一根Nd∶YAG圆棒.采用镜片镀膜的方法使Nd∶YAG工作在1319 nm波长,经腔内倍频得到单一波长659.5 nm红光输出,并对该激光器的基频及倍频输出特性进行了实验研究.  相似文献   

9.
苑利钢  周寿桓  赵鸿  陈国  魏磊  李宝  王克强 《红外与激光工程》2019,48(4):405006-0405006(8)
报道了一种高功率Tm:YAP激光器实验装置,采用b轴切割的YAP/Tm:YAP/YAP复合晶体作为激光增益介质,使用中心波长为795 nm的LD模块进行双端泵浦,当增益介质冷却温度为20℃,LD总泵浦功率为301.4 W时,获得了最高109.5 W的1.94 m波长线偏振激光输出,光-光转换效率约为36.3%,斜率效率约为45.8%,在此输出功率条件下测得光束质量M2因子为3.8。  相似文献   

10.
879nm直接抽运提高Nd∶GdVO_4激光器性能   总被引:1,自引:1,他引:1  
激光二极管(LD)大功率端面抽运固体激光器(DPSSL)中的热效应会影响到激光器的各个方面,使得激光输出效率下降,光束质量变坏、谐振腔的稳定性变差等。采用新波段879 nm取代808 nm,将粒子直接激励到激光发射上能级,降低无辐射弛豫过程产生的热量,有效地减少热的产生,降低激光二极管端面抽运Nd∶GdVO4晶体的热效应,获得更高性能的激光输出。在相同条件下通过879 nm激光二极管直接端面抽运及808 nm激光二极管间接端面抽运Nd∶GdVO4激光器的实验比较,结果表明,在较高抽运功率下采用879 nm抽运提高了Nd∶GdVO4激光器的激光输出性能。最后采用879 nm激光二极管端面抽运Nd∶GdVO4晶体棒直线腔方案,在16.3 W的吸收抽运功率下,获得最大连续输出功率9.8 W的TEM00模1063 nm激光输出,对吸收抽运光的光-光转换效率高达60.1%,斜率效率达68.4%。  相似文献   

11.
为了实现小型化、高功率、高效率连续2μm激光输出,采用中心波长792nm激光二极管(LD)抽运双掺杂Tm,Ho∶YLF晶体,将晶体封装在装有350mL液氮的杜瓦装置中,使其工作在77K温度条件下。光纤耦合激光二极管出纤功率14.8W,数值孔径0.3,芯径400μm。激光二极管端面抽运Tm,Ho∶YLF激光器,产生2.05μm线偏振连续激光输出,最大功率5.2W。由于Tm3+离子能级间的交叉弛豫效应导致的高抽运量子效率,实验获得的光-光转换效率为35%,斜度效率达到40%。采用双端面抽运结构,两个激光二极管注入功率29.6W时,Tm,Ho∶YLF激光器输出功率达10.2W,相当于光-光转换效率33%,斜度效率36%。  相似文献   

12.
室温下高效率连续波激光二极管端面抽运Tm:YAP激光器   总被引:2,自引:1,他引:1  
报道了一种室温下高效率运行的激光二极管(LD)端面抽运Tm:YAP连续波激光器.抽运源使用波长为795 nm的光纤耦合二极管激光器,Tm:YAP晶体c轴切割,掺杂原子数分数为3%,尺寸为3 mm×3 mm×7 mm.当输出镜透过率T为10%时,获得8.12 W的1.94 μm连续波激光输出,相对应的抽运功率为26.2 W,阈值抽运功率为4.67 W,斜率效率为52.1%,光一光转换效率为31.0%.使用光栅单色仪测得激光器输出中心波长为1938.2nm,谱线半峰全宽约为2.9 nm.  相似文献   

13.
王菲 《红外与激光工程》2019,48(6):606004-0606004(5)
设计了一种性能稳定、结构紧凑的光泵浦腔内倍频488 nm半导体薄片激光器。为获得光束质量好、输出性能稳定的488 nm激光器,利用808 nm LD从顶面垂直泵浦半导体增益介质芯片获得976 nm基频光,通过在腔内置入I类相位匹配的LBO晶体进行倍频获得488 nm激光输出。半导体增益介质芯片具有13量子阱和808 nm/976 nm双反射带反射镜,其双面键合金刚石散热片。在泵浦功率为9.2 W时,获得111 mW 488 nm激光输出,光谱线宽为1.3 nm,光-光效率为1.2%,光束质量Mx2、My2分别为1.03和1.02,连续工作3 h激光输出功率不稳定度为0.6%。  相似文献   

14.
高平均功率室温运转闪光灯抽运Cr:Tm:Ho:YAG激光器   总被引:2,自引:0,他引:2  
报道了氙灯抽运的2.1μm Cr:Tm:Ho:YAG激光器.室温下Cr:Tm:Ho:YAG为准三能级系统.振荡阈值高,掺杂离子问存在复杂的能量转移过程.采用优化掺杂浓度配比的激光晶体,长脉冲抽运,实现了室温下2.1 μm波长激光输出.采用了高漫反射陶瓷聚光腔,对有效抽运光谱带的反射率高达95%.冷却水温15℃条件下,重复频率10 Hz,获得最大平均功率23.5 w;重复频率5 Hz,获得最大激光脉冲能量2.58 J,最大斜率效率4.3%.  相似文献   

15.
885 nm和808 nm LD抽运Nd∶CNGG 935 nm激光器热效应研究   总被引:1,自引:1,他引:0  
从实验和理论两方面分析了808 nm和885 nm激光二极管(LD)端面抽运Nd∶CNGG 935 nm激光器的热透镜效应。当吸收功率为10 W时,在885 nm LD端面抽运情况下,Nd∶CNGG激光器的热透镜焦距约为808 nm LD端面抽运方式下的6.8倍。同时,利用885 nm LD端面抽运方式,晶体内部的温度梯度更小。利用808 nm和885 nm LD端面抽运方式,在抽运光束腰位置,Nd∶CNGG晶体内部最高温度分别为287.76 K和310.05 K。在抽运端面位置,晶体最高温度分别为285.78 K和317.18 K。相对于同等实验条件下的808 nm抽运方式,885 nm抽运下的Nd∶CNGG 935 nm激光器斜率效率提高了43%(从4.6%提高到6.6%),阈值降低了8%(从3.31 W下降到3.05 W)。  相似文献   

16.
对Nd:YAG 946 nm和 473 nm激光器特性进行了实验研究。采用二极管端面泵浦平-平腔实验结构,使用键合Nd:YAG晶体作为激光增益介质,在入射泵浦功率31.8 W时,得到最高11 W的连续波946 nm 激光输出,光-光转换效率34.6%,斜率效率35.4%,光束质量M2达到7.53,半小时内功率不稳定度小于0.4%。采用Ⅰ类临界相位匹配LBO晶体对946 nm激光进行内腔倍频,获得了0.887 W的连续波473 nm蓝光输出,光-光换转效率5.87%。实验结果表明:所设计的端面泵浦连续激光器具有很强的实用价值。  相似文献   

17.
利用激光二极管(LD)抽运Nd∶YVO4晶体产生914 nm谱线振荡,再通过腔内倍频技术获得457 nm激光输出,是获得大功率蓝光激光器的一条重要的技术路线,因而实现高效率运转的914 nm激光输出则是方案的关键。报道了激光二极管端面抽运Nd∶YVO4晶体、连续波运转的大功率914 nm准三能级激光器,方案中采用掺杂原子数分数为0.1%的低掺杂Nd∶YVO4晶体,有效地降低了热效应的影响,并通过准三能级理论模型的模拟计算选择了最佳晶体长度;通过对腔镜介质膜参数的适当控制,有效地抑制了波长为1064 nm和1342 nm的高增益谱线。实验中,914 nm激光器的阈值抽运功率仅为8.5 W,在31 W的抽运功率下914 nm激光输出功率高达7.2 W,激光器的斜率效率为32%,光-光转换效率为23.2%。  相似文献   

18.
提研究了采用激光二极管(LD)侧面抽运Tm :YAG的激光器的低温输出特性。实验利用液氮杜瓦装置对Tm :YAG晶体进行冷却,最低温度达到了78.2K。采用平凹腔结构,采用中心波长785nm的激光二极管为抽运源,当LD注入功率为60W ,晶体工作温度为80K时,获得了14.2W的连续激光输出,光-光转换效率为23.67%。实验测试了在相同泵浦功率,不同温度下Tm :YAG晶体的激光输出功率。  相似文献   

19.
激光二极管双端面抽运Tm:Ho:GdVO4 2 μm激光器   总被引:1,自引:2,他引:1  
报道了激光二极管(LD)双端面抽运Tm∶Ho∶GdVO4固体激光器,在2.049μm处获得连续(CW)和准连续(QCW)激光输出。激光二极管为光纤耦合输出,光纤芯径400μm,数值孔径0.22,输出波长805 nm。激光二极管额定输出功率27.7 W,均分为两束双端面抽运激光晶体。晶体尺寸为4 mm×4 mm×7 mm,Tm,Ho掺杂原子数分数分别为5%,0.5%。分析了Tm∶Ho能级系统的主要能级跃迁和能量转换损耗。为提高激光器的输出功率和转换效率,激光晶体采用液氮制冷。在重复频率5 kHz,10 kHz,20 kHz,调Q以及连续运行模式下,获得了9.4~10.1 W的激光输出,光-光转换效率为34%~36%。最大单脉冲能量为1.9 mJ,最大峰值功率为0.13 MW。讨论了抽运光功率和重复频率对激光脉宽的影响。  相似文献   

20.
报道了一台激光二极管(LD)侧面抽运的高功率连续1338 nm Nd:YAG激光器.通过分析Nd:YAG的跃迁谱线和相应的受激发射截面的特点,根据多跃迁谱线激光材料波长选择的耦合率条件,合理设计激光棒和腔镜的耦合率参数.激光谱线测量表明,成功抑制了1064 nm和1319 nm波长激光的振荡.以高功率808 nm激光二极管侧面抽运模块为抽运源,采用平-平腔结构,研究了耦合输出率分别为5.3%,7.4%和11%的输出镜的输出情况,比较分析了不同腔长对激光输出的影响.在抽运功率为555 W时,采用5.3%的耦合输出镜和20 cm腔长,获得大于100 W的1338 nm单一波长激光输出,光-光转换效率大于18%,斜率效率为35%,输出光束的M2因子为36.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号