首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
BACKGROUND: Combinatorial methods based on binary patterning of polar and nonpolar residues have been used to generate large libraries of de novo alpha-helical proteins. Within such libraries, the ability to find structures that resemble natural proteins requires a rapid method to sort through large collections of proteins and detect those possessing 'native-like' features. The current paper presents such a method and applies it to an initial collection of de novo proteins. RESULTS: We present a method to identify proteins with native-like properties from libraries of de novo sequences expressed in vivo. A novel 'rapid prep' freeze/thaw procedure was used to prepare samples; chromatographic purification was not required. The semi-crude samples were analyzed for native-like features by one-dimensional 1H NMR spectroscopy. Using this method, we demonstrate that native-like features can readily be observed for several proteins among a collection of sequences designed by binary patterning of polar and nonpolar amino acids. CONCLUSIONS: Native-like properties can be detected using a method that requires neither isotopic enrichment nor chromatographic purification. The method is inexpensive, rapid, and suitable for parallel processing. It can therefore be employed to screen for native-like properties among large collections of de novo sequences. Using this method, we demonstrate that although the binary code strategy does not explicitly design tertiary packing, it can nonetheless generate proteins that possess native-like properties. The use of combinatorial methods to produce large collections of proteins coupled with the availability of a rapid assay for detecting native-like properties will facilitate the design and isolation of novel proteins with desirable properties.  相似文献   

2.
The design and chemical synthesis of two de novo four-helix bundle proteins is described; each protein has two bound cofactors. Their construction from purified peptides is based on the modular assembly of different amphiphilic helices by chemoselective coupling to a cyclic peptide template. In the hydrophobic interior of the antiparallel four-helix bundle these proteins contain a heme in a binding pocket with two ligating histidine residues. A ruthenium-tris(bipyridine) complex is covalently bound to different positions at the hydrophilic side of one of the heme-binding helices. Laser-induced electron transfer across the varied distance through this helix has been studied and compared with a pathway analysis. The UV-visible, CD, and mass spectra are consistent with the structure and orientation predetermined by the template.  相似文献   

3.
Using recently emerging protein folding principles we have designed a protein enriched in the essential amino acids methionine, threonine, lysine and leucine. Our preliminary study of consensus residues (based on charge, hydrophobicity and volume) of natural alpha-helical bundle proteins indicated that the residues M, T, K, and L could be inserted in an alpha-helical bundle structure. We therefore attempted to create a stable de novo protein, highly enriched in these essential amino acids, that would adopt the alpha-helical bundle fold. The design process was an iterative one. The consensus residues (based on the properties profile) for bundle helices were found considering the four helices taken together, helices I to IV individually, or only their N- and C-termini. Using these data, the helices in our de novo protein were designed by inserting the residues M, T, K and L as often as possible at positions where their volume, hydrophobicity and charge match the consensus found in natural bundle helices. Short sequences of strong turn formers were used to join the helices and adjust the predicted p1 to 7.7, while a number of local and global factors were used to refine our design. Further, the sequence was checked to eliminate various known protease targets in E. coli. The sequence of our de novo protein, MB1, is: MAT-EDMTDMMTTLFKTMQLLTK-SEPTA-MDEATKTATTMKNHLQNLMQK-TKNKE DMTDMATTYFKTMQLLTK-TEPSA-MDEATKTATTMKNHLQNLMQK-GVA+ ++ , where dashes separate long helices from short, turn forming linkers. A gene coding for this protein was assembled from synthetic oligonucleotides, then fused to the maltose binding protein gene under the control of a tac promoter. The fusion protein was expressed in E. coli, purified and cleaved to yield maltose binding protein and our de novo protein, MB1. MB1 was found to be helical, to have the expected molecular weight (11 kDa) and the expected content (57%) of the essential amino acids M, T, K and L.  相似文献   

4.
The structural genes for the flavoprotein subunit and cytochrome c subunit of p-cresol (4-methylphenol) methylhydroxylase (PCMH) from Pseudomonas putida NCIMB 9869 (National Collection of Industrial and Marine Bacteria, Aberdeen, Scotland) and P. putida NCIMB 9866 were cloned and sequenced. The genes from P.putida NCIMB 9869 were for the plasmid-encoded A form of PCMH, and the genes from P.putida NCIMB 9866 were also plasmid encoded. The nucleotide sequences of the two flavoprotein genes from P.putida NCIMB 9869 and P.putida NCIMB 9866 (pchF69A and pchF66, respectively) were the same except for 5 bases out of 1,584, and the translated amino acid sequences were identical. The nucleotide sequences of the genes for the cytochrome subunits of PCMH from the two bacteria (pchC69A and pchC66) varied by a single nucleotide in their 303-base sequences, and the translated amino acid sequences differed by a single residue at position 41 (Asp in PchC69A and Ala in PchC66). Both cytochromes had 21-residue signal sequences, as expected for periplasmic proteins, and these sequences were identical. On the other hand, no signal sequences were found for the flavoproteins.pchF69A and pchC69A were expressed, separately or together, in Escherichia coli JM109 and P.putida RA4007, with active PCMH produced in both bacteria. The E. coli-expressed flavocytochrome was purified. Our studies indicated that the E.coli-expressed subunits were identical to the subunits expressed in P.putida NCIMB 9869: molecular weights, isoelectric points, UV-visible spectra, and steady-state kinetic parameters were the same for the two sets of proteins. The subunits readily associated upon mixing two crude extracts of E.coli, one extract containing PchC69A and the other containing PchF69A. The courses of association of PchC69A and PchF69A were essentially identical for pure E. coli-expressed subunits and pure P. putida 9869-expressed subunits. E. coli-expressed PchC69A and PchF69A contained covalently bound heme and covalently bound flavin adenine dinucleotide, respectively, as the proteins expressed in nature.  相似文献   

5.
The role of beta-turns in dictating the structure of a beta-barrel protein is assessed by probing the tolerance of the central beta-turn of poplar plastocyanin to substitution by arbitrary sequences. Native plastocyanin binds copper and is colored bright blue. However, when the wild-type Pro47-Ser48-Gly49-Val50 turn sequence is replaced by arbitrary tetrapeptides, the vast majority (92/98 = 94%) of mutant proteins cannot fold into the native blue structure. Characterization of the colorless mutant proteins demonstrates that the majority of substitutions in this type II beta-turn disrupt the native structure severely. Gross structural changes are indicated by major differences in the CD spectra of the mutants relative to the wild-type protein, and by the much larger apparent size of mutant proteins in gel filtration experiments. These mutant proteins do not bind copper. Furthermore, Cys84 forms a disulfide bond readily in the colorless mutant proteins, indicating that it has moved away from the buried position it occupies in the native copper binding site and has become exposed. These results indicate that the central beta-turn in plastocyanin is not merely a default structure arising in response to the surrounding context; rather, sequence information in this turn plays an active role in dictating the location of a chain reversal in the beta-barrel structure. These findings are discussed in terms of their implications for the folding of natural proteins, as well as the design of de novo proteins.  相似文献   

6.
The kinetics of the interaction of heme with hemopexin and albumin was monitored by measuring the time dependence of changes in the Soret absorption spectra. Since the protein binding sites can only bind heme monomers, the binding kinetics apparently reflected the slow dissociation of heme dimers, resulting from dimer/monomer equilibria in aqueous heme solutions. The dissociation of heme dimers is characterized by the rate constant of (3-4) x 10(-3) s(-1). The measurements further revealed significant differences in the kinetic profiles (slowing down the binding interaction) that were dependent on the storage time of heme solutions at room temperature. These presumably responded to the gradual formation of higher aggregates of heme, which cannot dissociate into dimers/monomers. Alternatively, partial autooxidation of heme molecules could increase the stability of heme dimers and obstruct specific binding of heme to the proteins.  相似文献   

7.
We present two methods for designing amino acid sequences of proteins that will fold to have good hydrophobic cores. Given the coordinates of the desired target protein or polymer structure, the methods generate sequences of hydrophobic (H) and polar (P) monomers that are intended to fold to these structures. One method designs hydrophobic inside, polar outside; the other minimizes an energy function in a sequence evolution process. The sequences generated by these methods agree at the level of 60-80% of the sequence positions in 20 proteins in the Protein Data Bank. A major challenge in protein design is to create sequences that can fold uniquely, i.e. to a single conformation rather than to many. While an earlier lattice-based sequence evolution method was shown not to design unique folders, our method generates unique folders in lattice model tests. These methods may also be useful in designing other types of foldable polymer not based on amino acids.  相似文献   

8.
Heme, the iron-containing cofactor essential for the activity of many enzymes, is incorporated into its target proteins by unknown mechanisms. Here, an Escherichia coli hemoprotein, CcmE, was shown to bind heme in the bacterial periplasm by way of a single covalent bond to a histidine. The heme was then released and delivered to apocytochrome c. Thus, CcmE can be viewed as a heme chaperone guiding heme to its appropriate biological partner and preventing illegitimate complex formation.  相似文献   

9.
10.
A method is described for searching protein sequence databases using tandem mass spectra of tryptic peptides. The approach uses a de novo sequencing algorithm to derive a short list of possible sequence candidates which serve as query sequences in a subsequent homology-based database search routine. The sequencing algorithm employs a graph theory approach similar to previously described sequencing programs. In addition, amino acid composition, peptide sequence tags and incomplete or ambiguous Edman sequence data can be used to aid in the sequence determinations. Although sequencing of peptides from tandem mass spectra is possible, one of the frequently encountered difficulties is that several alternative sequences can be deduced from one spectrum. Most of the alternative sequences, however, are sufficiently similar for a homology-based sequence database search to be possible. Unfortunately, the available protein sequence database search algorithms (e.g. Blast or FASTA) require a single unambiguous sequence as input. Here we describe how the publicly available FASTA computer program was modified in order to search protein databases more effectively in spite of the ambiguities intrinsic in de novo peptide sequencing algorithms.  相似文献   

11.
Alignments of the amino acid sequences of subunit I (FixN or CcoN) of the cbb3-type oxidases show 12 conserved histidines. Six of them are diagnostic of heme-copper oxidases and are thought to bind the following cofactors: the low spin heme B and the binuclear high spin heme B-CuB center. The other six are FixN(CcoN)-specific and their function is unknown. To analyze the contribution of these 12 invariant histidines of FixN in cofactor binding and function of the Bradyrhizobium japonicum cbb3-type oxidase, they were substituted by valine or alanine by site-directed mutagenesis. The H131A mutant enzyme had already been reported previously to be defective in oxidase assembly and function (Zufferey, R., Th?ny-Meyer, L., and Hennecke, H. (1996) FEBS Lett. 394, 349-352). Four of the remaining histidines were not essential for activity or assembly (positions 226, 246, 333, and 457); by contrast, histidines 331, 410, and 418 were required both for activity and stability of the enzyme. The last group of mutant enzymes, H420A, H280A, H330A, and H316V, were assembled but not functional. To purify the latter mutant proteins and the wild-type enzyme, a six-histidine tag was added to the C terminus of subunit I. The His6-tagged cbb3-oxidase complexes were purified 20-fold by a three-step purification protocol. With the exception of the H420A mutant oxidase, the mutant enzymes H280A, H316V, and H331A contained normal amounts of copper and heme B, and they displayed similar visible light spectroscopic characteristics like the wild-type His6-tagged enzyme. The His6-tagged H420A mutant oxidase differed from the His6-tagged wild-type protein by showing altered visible light spectroscopic characteristics. No stable mutant oxidase lacking copper or heme B was obtained. This strongly suggests that copper and heme B incorporations in subunit I are prerequisites for assembly of the enzyme.  相似文献   

12.
13.
A collection of C-terminal deletion mutants of the influenza A virus NS1 gene has been used to define the regions of the NS1 protein involved in its functionality. Immunofluorescence analyses showed that the NS1 protein sequences downstream from position 81 are not required for nuclear transport. The capacity of these mutants to bind RNA was studied by in vitro binding tests using a model vRNA probe. These experiments showed that the N-terminal 81 amino acids of NS1 protein are sufficient for RNA binding activity. The collection of mutants also served to map the NS1 sequences required for nuclear retention of mRNA and for stimulation of viral mRNA translation, using the NP gene as reporter. The results obtained indicated that the N-terminal 113 amino acids of NS1 protein are sufficient for nuclear retention of mRNA and stimulation of viral mRNA translation. The possibility that this region of the protein may be sufficient for virus viability is discussed in relation to the sequences of NS1 genes of field isolates and to the phenotype of known viral mutants affected in the NS1 gene.  相似文献   

14.
Brain natriuretic peptide (BNP) was examined as part of a continuing study of the interaction of proteins and peptides with the glycosaminoglycan heparin. BNP was tentatively identified as a heparin-binding protein on the basis of its cyclic structure and the high frequency of the basic amino acid residues, lysine and arginine. Thermodynamic analysis using isothermal titration calorimetry confirmed heparin binding to BNP with a micromolar Kd. Surprisingly, despite the high frequency (22%) of basic residues in BNP, only a small portion of the free energy of this interaction resulted from ionic contributions under physiologic conditions. The contribution of polar amino acids, representing 28% of BNP, was next examined in a variety of different buffers. These experiments demonstrated the transfer of five protons from buffer to BNP on heparin binding, suggesting that hydrogen bonding between the polar residues of BNP and heparin is a major factor contributing to the free energy of BNP binding to heparin. Hydrophobic forces apparently play only a small role in binding. Heparin contains few nonpolar functional groups, and a positive change in heat capacity (DeltaCp = 1 kcal/mol) demonstrates the loss of polar residues on BNP-heparin binding.  相似文献   

15.
DCoH, the dimerization cofactor of hepatocyte nuclear factor-1, stimulates gene expression by associating with specific DNA binding proteins and also catalyzes the dehydration of the biopterin cofactor of phenylalanine hydroxylase. The x-ray crystal structure determined at 3 angstrom resolution reveals that DCoH forms a tetramer containing two saddle-shaped grooves that comprise likely macromolecule binding sites. Two equivalent enzyme active sites flank each saddle, suggesting that there is a spatial connection between the catalytic and binding activities. Structural similarities between the DCoH fold and nucleic acid-binding proteins argue that the saddle motif has evolved to bind diverse ligands or that DCoH unexpectedly may bind nucleic acids.  相似文献   

16.
Solution two-dimensional 1H NMR studies have been carried out on cyanide-inhibited horseradish peroxidase isozyme C (HRPC-CN) to explore the scope and limitations of identifying residues in the heme pocket and substrate binding site, including those of the "second sphere" of the heme, i.e. residues which do not necessarily have dipolar contact with the heme. The experimental methods use a range of experimental conditions to obtain data on residue protons with a wide range of paramagnetic relaxivity. The signal assignment strategy is guided by the recently reported crystal structure of recombinant HRPC and the use of calculated magnetic axes. The goal of the assignment strategy is to identify signals from all residues in the heme, as well as proximal and distal, environment and the benzhydroxamic acid (BHA) substrate binding pocket. The detection and sequence specific assignment of aromatic and aliphatic residues in the vicinity of the heme pocket confirm the validity of the NMR methodologies described herein. Nearly all residues in the heme periphery are now assigned, and the first assignments of several "second sphere" residues in the heme periphery are reported. The results show that nearly all catalytically relevant amino acids in the active site can be identified by the NMR strategy. The residue assignment strategy is then extended to the BHA:HRPC-CN complex. Two Phe rings (Phe 68 and Phe 179) and an Ala (Ala 140) are shown to be in primary dipolar contact to BHA. The shift changes induced by substrate binding are shown to reflect primarily changes in the FeCN tilt from the heme normal. The present results demonstrate the practicality of detailed solution 1H NMR investigation of the manner in which substrate binding is perturbed by either variable substrates or point mutations of HRP.  相似文献   

17.
A copper-containing nitrite reductase gene (nirU) from Pseudomonas sp. strain G-179 was found in a 1.9-kb EcoRI-BamHI DNA fragment. The coding region contained information for a polypeptide of 379 amino acids. The encoded protein had 78% identity in amino acid sequence to the nitrite reductase purified from Achromobacter cycloclastes. The ligands for type 1 copper- and type 2 copper-binding sites found in A. cycloclastes were also found in Pseudomonas sp. strain G-179, suggesting that these binding sites are conserved. Upstream from the promoter, two putative fnr boxes were found, suggesting that an FNR-like protein may be involved in regulation of the nitrite reductase gene under anaerobic conditions. When the 1.9-kb clone was used to probe Southern blots for similar sequences in DNAs from different denitrifiers, hybridization bands were seen for 15 of 16 denitrifiers known to have nitrite reductase containing copper. Except for Pseudomonas stutzeri JM300, all denitrifiers tested that have nitrite reductases containing heme c,d1 showed no or weak hybridization to this probe. Thus, this structural gene may be useful as a probe to detect denitrifiers with copper-containing nitrite reductases.  相似文献   

18.
The yeast TTAGGG binding factor 1 (Tbf1) was identified and cloned through its ability to interact with vertebrate telomeric repeats in vitro. We show here that a sequence of 60 amino acids located in its C-terminus is critical for DNA binding. This sequence exhibits homologies with Myb repeats and is conserved among five proteins from plants, two of which are known to bind telomeric-related sequences, and two proteins from human, including the telomeric repeat binding factor (TRF) and the predicted C-terminal polypeptide, called orf2, from a yet unknown protein. We demonstrate that the 111 C-terminal residues of TRF and the 64 orf2 residues are able to bind the human telomeric repeats specifically. We propose to call the particular Myb-related motif found in these proteins the 'telobox'. Antibodies directed against the Tbf1 telobox detect two proteins in nuclear and mitotic chromosome extracts from human cell lines. Moreover, both proteins bind specifically to telomeric repeats in vitro. TRF is likely to correspond to one of them. Based on their high affinity for the telomeric repeat, we predict that TRF and orf2 play an important role at human telomeres.  相似文献   

19.
The complement receptor type 1 (CR1; CD35), carrying 30 short consensus repeats (SCRs), has two sites. Site 1 contains SCR-1 and SCR-2 and binds C4b. Site 2 contains SCR-8 and SCR-9 and was reported to bind mainly C3b (Klickstein, L. B., Bartow, T. J., Miletic, V., Rabson, L. D., Smith, J. A., and Fearon, D. T. (1988) J. Exp. Med. 168, 1699-1717). For the functional analysis we used two constructs, each with one site. CR1-4, composed of eight and one-half initial SCRs, carries site 1, binds C4b, and is cofactor for C4b cleavage. CR1-4(8,9), obtained from CR1-4 by converting site 1 to site 2, binds iC3/C3b and, unexpectedly, C4b. It is a cofactor for cleavage of both ligands. Its cofactor activity for C4b cleavage is greater than that of site 1. Analysis of the mutants constructed by interchanging homologous peptides between the two sites identified no sequences necessary for cofactor activity other than those required for binding. In site 2, peptides important for both ligands were found. Some modifications of either site led to higher activity for both ligands. Thus the activity of complement regulators can be increased by changing a few amino acids within SCRs, an important step toward the generation of more effective inhibitors of complement activation. Knowledge of the active sites of CR1 should be applicable to other SCR-containing proteins and should provide insights into the evolution of these proteins.  相似文献   

20.
Although interactions of proteins with glycosaminoglycans (GAGs), such as heparin and heparan sulphate, are of great biological importance, structural requirements for protein-GAG binding have not been well-characterised. Ionic interactions are important in promoting protein-GAG binding. Polyelectrolyte theory suggests that much of the free energy of binding comes from entropically favourable release of cations from GAG chains. Despite their identical charges, arginine residues bind more tightly to GAGs than lysine residues. The spacing of these residues may determine protein-GAG affinity and specificity. Consensus sequences such as XBBBXXBX, XBBXBX and a critical 20 A spacing of basic residues are found in some protein sites that bind GAG. A new consensus sequence TXXBXXTBXXXTBB is described, where turns bring basic interacting amino acid residues into proximity. Clearly, protein-GAG interactions play a prominent role in cell-cell interaction and cell growth. Pathogens including virus particles might target GAG-binding sites in envelope proteins leading to infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号