首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张国银  杨智  谭洪舟 《自动化学报》2008,34(9):1148-1157
针对关系度不确定非线性系统, 基于模型预测控制理论和切换解析非线性模型预测控制(Nonlinear model predictive control, NMPC) 提出了一种非切换的解析NMPC新方法. 论证了在非切换解析NMPC控制律下, 通过坐标变换可以将闭环系统分别在关系度确定和不确定的两个子空间近似为线性系统, 得出非切换解析NMPC使闭环系统稳定的必要条件. 通过仿真实验验证了非切换解析NMPC可以达到很好的响应特性, 无需切换的特征也扩大了其应用范围.  相似文献   

2.
一种新型非线性Hammerstein系统动态矩阵控制算法   总被引:1,自引:0,他引:1  
将动态矩阵控制策略(DMC)推广到由一个非线性静态多项式函数和一个线性动态阶跃响应环节组成的非线性Ham-merstein系统,详细地给出了该新型非线性Hammerstein系统动态矩阵控制算法(NLH-DMC).把NLH-DMC应用于一套强非线性pH中和过程,给定值跟踪和抗干扰仿真结果表明,NLH-DMC比线性DMC(LDMC)和过程控制领域常用的非线性PID(NL-PID)具有更好的控制性能.进一步的仿真实验证实,NLH-DMC不仅具有良好的控制响应,而且在存在较大模型误差时仍具有很好的稳定性及鲁棒性.  相似文献   

3.
基于多面体描述系统的鲁棒非线性预测控制   总被引:1,自引:0,他引:1  
黄骅  何德峰  俞立 《自动化学报》2012,38(12):1906-1912
针对一类具有持续有界扰动的离散时间非线性系统, 提出一种基于多面体描述系统的鲁棒非线性模型预测控制策略. 首先利用泰勒级数构造多面体描述系统包裹原系统. 其次, 对该多面体描述系统构造鲁棒终端不变集和仿射输入型预测控制律. 进一步, 利用离散系统的输入状态实际稳定性(Input-to-state practical stability, ISpS)概念证明了闭环系统的鲁棒稳定性. 最后, 通过仿真验证了本结果的有效性.  相似文献   

4.
A new model predictive control (MPC) algorithm for nonlinear systems is presented, its stabilizing property is proved, and its attractive regions are estimated. The presented method is based on the feasible solution, which makes the attractive regions much larger than those of the normal MPC controller that is based on the optimal solution.  相似文献   

5.
6.
针对苯乙烯聚合反应过程的非线性特性,将预测控制方法与多模型建模和控制原理结合起来,提出了一种基于性能指标的切换多模型非线性预测控制方法,针对聚合反应过程进行的仿真实验结果表明,该方法对类似非线性对象具有适用性,控制性能相比较普通预测控制算法也有了很明显的改进和提高.  相似文献   

7.
Nonlinear Model Predictive Control (NMPC) enables the incorporation of detailed dynamic process models for nonlinear, multivariable control with constraints. This optimization-based framework also leads to on-line dynamic optimization with performance-based and so-called economic objectives. Nevertheless, economic NMPC (eNMPC) still requires careful formulation of the nonlinear programming (NLP) subproblem to guarantee stability. In this study, we derive a novel reduced regularization eNMPC approach with stability guarantees. Compared with full state regularization, the proposed strategy is less conservative and easier to implement. The resulting eNMPC framework is firstly demonstrated on a nonlinear continuous stirred-tank reactor (CSTR) example and a large-scale double distillation system example. Then the proposed strategy is applied to a challenging nonlinear CO2 capture model, where bubbling fluidized bed models comprise a solid-sorbent post-combustion carbon capture system. Our results indicate the benefits of this improved eNMPC approach over tracking to the setpoint, and better stability over eNMPC without regularization.  相似文献   

8.
The objective of this work is to enhance the economic performance of a batch transesterification reactor producing biodiesel by implementing advanced, model based control strategies. To achieve this goal, a dynamic model of the batch reactor system is first developed by considering reaction kinetics, mass balances and heat balances. The possible plant-model mismatch due to inaccurate or uncertain model parameter values can adversely affect model based control strategies. Therefore, an evolutionary algorithm to estimate the uncertain parameters is proposed. It is shown that the system is not observable with the available measurements, and hence a closed loop model predictive control cannot be implemented on a real system. Therefore, the productivity of the reactor is increased by first solving an open-loop optimal control problem. The objective function for this purpose optimizes the concentration of biodiesel, the batch time and the heating and cooling rates to the reactor. Subsequently, a closed-loop nonlinear model predictive control strategy is presented in order to take disturbances and model uncertainties into account. The controller, designed with a reduced model, tracks an offline determined set-point reactor temperature trajectory by manipulating the heating and cooling mass flows to the reactor. Several operational scenarios are simulated and the results are discussed in view of a real application. With the proposed optimization and control strategy and no parameter mismatch, a revenue of 2.76 $ min−1 can be achieved from the batch reactor. Even with a minor parameter mismatch, the revenue is still 2.01 $ min−1. While these values are comparable to those reported in the literature, this work also accounts for the cost of energy. Moreover, this approach results in a control strategy that can be implemented on a real system with limited online measurements.  相似文献   

9.
This paper addresses the problem of decentralized tube‐based nonlinear model predictive control (NMPC) for a general class of uncertain nonlinear continuous‐time multiagent systems with additive and bounded disturbance. In particular, the problem of robust navigation of a multiagent system to predefined states of the workspace while using only local information is addressed under certain distance and control input constraints. We propose a decentralized feedback control protocol that consists of two terms: a nominal control input, which is computed online and is the outcome of a decentralized finite horizon optimal control problem that each agent solves at every sampling time, for its nominal system dynamics; and an additive state‐feedback law which is computed offline and guarantees that the real trajectories of each agent will belong to a hypertube centered along the nominal trajectory, for all times. The volume of the hypertube depends on the upper bound of the disturbances as well as the bounds of the derivatives of the dynamics. In addition, by introducing certain distance constraints, the proposed scheme guarantees that the initially connected agents remain connected for all times. Under standard assumptions that arise in nominal NMPC schemes, controllability assumptions, communication capabilities between the agents, it is guaranteed that the multiagent system is input‐to‐state stable with respect to the disturbances, for all initial conditions satisfying the state constraints. Simulation results verify the correctness of the proposed framework.  相似文献   

10.
In recent years, storage of carbon dioxide (CO2) in saline aquifers has gained intensive research interest. The implementation, however, requires further research studies to ensure it is safe and secure operation. The primary objective is to secure the CO2 which relies on a leak-proof formation. Reservoir pressure is a key aspect for assessment of the cap rock integrity. This work presents a new pressure control methodology based on a nonlinear model predictive control (NMPC) scheme to diminishing risk of carbon dioxide (CO2) back leakage to the atmosphere due to a fail in the integrity of the formation cap rock. The CO2 sequestration process in saline aquifers is simulated using ECLIPSE-100 as black oil reservoir simulator while the proposed control scheme is realized in MATLAB software package to prevent over-pressurization. A modified form of growing and pruning radial basis function (MGAP-RBF) neural network model is identified online for prediction of reservoir pressure behaviors. MGAP-RBF is recursively trained via extended Kalman filter (EKF) and unscented Kalman filter (UKF) algorithms. A set of miscellaneous test scenarios has been conducted using an interface program to exchange ECLIPSE and MATLAB in order to demonstrate the capabilities of the proposed methodology in guiding saline aquifer to follow some desired time-dependent pressure profiles during the CO2 injection process.  相似文献   

11.
The problem of robust adaptive predictive control for a class of discrete-time nonlinear systems is considered. First, a parameter estimation technique, based on an uncertainty set estimation, is formulated. This technique is able to provide robust performance for nonlinear systems subject to exogenous variables. Second, an adaptive MPC is developed to use the uncertainty estimation in a framework of min–max robust control. A Lipschitz-based approach, which provides a conservative approximation for the min–max problem, is used to solve the control problem, retaining the computational complexity of nominal MPC formulations and the robustness of the min–max approach. Finally, the set-based estimation algorithm and the robust predictive controller are successfully applied in two case studies. The first one is the control of anonisothermal CSTR governed by the van de Vusse reaction. Concentration and temperature regulation is considered with the simultaneous estimation of the frequency (or pre-exponential) factors of the Arrhenius equation. In the second example, a biomedical model for chemotherapy control is simulated using control actions provided by the proposed algorithm. The methods for estimation and control were tested using different disturbances scenarios.  相似文献   

12.
Progress in optimization algorithms and in computational hardware made deployment of Nonlinear Model Predictive Control (NMPC) and Moving Horizon Estimation (MHE) possible to mechatronic applications. This paper aims to assess the computational performance of NMPC and MHE for rotational start-up of Airborne Wind Energy systems. The capabilities offered by an automatic code generation tool are experimentally verified on a real physical system, using a model comprising 27 states and 4 inputs at a sampling frequency of 25 Hz. The results show the feedback times less than 5 ms for the NMPC with more than 1500 variables.  相似文献   

13.
Polymer electrolyte membrane fuel cells are efficient energy converters and provide electrical energy, water and oxygen depleted air with a low oxygen content as exhaust gas if fed with air. Due to their low emission of greenhouse gases and noise they are investigated as replacement for auxiliary power units currently used for electrical power supply on aircraft. Oxygen depleted air, called ODA-gas, with an oxygen concentration of 10–11% and a low humidity can be used for tank-inerting on aircraft. A challenging task is controlling the fuel cell system for generation of dehumidified ODA-gas mass flow while simultaneously keeping bounds and gradients on control inputs. This task is attacked by a nonlinear model predictive control. Not all system states can be measured and some states measured exhibit a significant time delay. A nonlinear state estimation strategy builds the entire system state and compensates for the delay. The nonlinear model predictive control and the state estimation are derived from the system model, which is presented. Simulation and experimental results are shown.  相似文献   

14.
分析了当前的非线性模型预测控制(Nonlinear Model Predictive Control,NMPC)技术和应用现状,并为今后的研究和发展提出了一些课题。给出了NMPC的主要原理,并概述了NMPC的关键优点/不足及其一些理论、计算和实施方面的问题。除了关于NMPC的数学构造及其闭环稳定性的基本问题的一般描述,还对如NMPC的鲁棒构造问题、输出反馈问题,并对闭环系统的性能预测进行了讨论。一个NMPC算法的成功取决于最初选择的非线性模型结构的合理性,所以给出了可为一个新的NMPC算法形成潜在数学构造的一些合适的非线性模型结构的简述。总之,3个对NMPC应用的最主要障碍是:非线性模型的开发;状态估计;快速、可靠的实时控制算法的求解方案。对于未来NMPC技术的需求包括非线性模型辨识的系统方法发展;非线性估计方法;可靠的数值求解技术;以及评价NMPC应用的更好方法。  相似文献   

15.
System outputs with different sampling times may challenge traditional subspace identification methods to generate accurate process models and consequently provide model-based control systems that may not be very effective. The multi-rate identification problem is addressed by dividing the multi-rate sampled system into different subsystems, and a multi-rate distributed model predictive control technique is proposed to control such systems. The performance of the proposed method is evaluated and illustrated by modeling and controlling the Tennessee Eastman challenge problem.  相似文献   

16.
针对步行双足机器人实时步态规划问题,提出了一种改进的非线性模型预测控制(NMPC)方法.采用扩展的关节坐标,将单腿支撑相(SSP)和双腿支撑相(DSP)统一表示为一个非线性动力学模型.通过对SSP和DSP的3个阶段设定运动学和动力学虚拟约束,将复杂实时步态规划问题转化为4个以预测时域内控制量二次型为代价函数的NMPC问题.采用直接法将连续优化问题参数化为有限维优化问题,并采用惩罚函数法将状态变量约束转化为代价函数中的惩罚项,从而得到能够用渐进二次规划(SQP)求解的有限维静态优化问题.仿真结果表明,应用该方法对BIP机器人模型进行实时步态规划,实现了包含足部转动的动态步行,且机器人满足稳定性条件,不发生侧滑,从而证明了该方法的有效性和可实现性.  相似文献   

17.
The economic performance of an industrial scale semi-batch reactor for biodiesel production via transesterification of used vegetable oils is investigated by simulation using nonlinear model predictive control (NMPC) technology. The objective is to produce biodiesel compliant to the biodiesel standards at the minimum costs. A first-principle model is formulated to describe the dynamics of the reactor mixture temperature and composition. The feed oil and mixture composition are characterized using a pseudo-component approach, and the thermodynamic properties are estimated from group contribution methods. The dynamic model is used by the NMPC framework to predict the optimal control profiles, where a multiple shooting based dynamic optimization problem is solved at every sampling time. Simulation results with the economic performance of an industrial scale semi-batch reactor are presented for control configurations manipulating the methanol feed flow rate and the heat duty.  相似文献   

18.
It is well known that, due to bimodal operation as well as existent discontinuous differential states of batteries, standalone microgrids belong to the class of hybrid dynamical systems of non-Filippov type. In this work, however, standalone microgrids are presented as complementarity systems (CSs) of the Filippov type which is then used to develop a multivariable nonlinear model predictive control (NMPC)-based load tracking strategy as well as Modelica models for long-term simulation purposes. The developed load tracker strategy is a multi-source maximum power point tracker (MPPT) that also regulates the DC bus voltage at its nominal value with the maximum of ±2.0% error despite substantial demand and supply variations.  相似文献   

19.
This work aims the development of an inferential nonlinear model predictive control (NMPC) scheme based on a nonlinear fast rate model that is identified from irregularly sampled multirate data, which is corrupted with unmeasured disturbances and measurement noise. The model identification is carried out in two steps. In the first step, a MISO fast rate nonlinear output error (NOE) model is identified from the irregularly sampled output data. In the second step, a time varying nonlinear auto-regressive (NAR) type model is developed using the residuals generated in the first step. The deterministic and stochastic components of the observer are parameterized using generalized ortho-normal basis filters (GOBF). The identified NOE and NAR models are combined to form MISO state observers. We then proceed to use these identified observers to formulate a nonlinear MPC strategy for controlling irregularly sampled multirate systems. The identified observers are used to generate inter-sample estimates of the irregularly sampled outputs and for performing future trajectory predictions. The efficacy of the proposed modeling and control scheme is demonstrated using simulations on a benchmark continuous fermentation process. This process exhibits input multiplicity and change in the sign of steady state gain in the operating region. The validity of the proposed modeling and control scheme is also established by conducting identification and control experiments on a laboratory scale heater-mixer setup. The proposed NMPC gives satisfactory regulatory as well as servo performance over a wide operating range in the irregularly sampled multirate scenario.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号