首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用成型TiO2为载体,以甲烷为碳源,镍铜双金属催化剂,改变反应温度以及碳氢比(CH4/H2摩尔比),生长纳米碳纤维(CNF),制备出结构化复合纳米碳纤维催化材料-生长在成型TiO2上的纳米碳纤维材料(CNF/TiO2).扫描电镜(SEM)和物理吸附仪(BET)表征结果表明,CNF粗细均匀、直径~70 nm,而且与其他传统催化剂载体(活性炭)相比几乎没有微孔.并以CNF/TiO2为载体,采用浸渍法负载金属钯,制备出结构化纳米碳纤维负载型钯催化剂(Pd/CNF/TiO2),以苯乙烯加氢为模型反应进行活性评价,结果表明,其催化活性明显优于成型活性炭负载型Pd催化荆.结构化纳米碳纤维具有比表面适中,且不含微孔,是一种优良的催化剂载体,可望用于受内扩散制约的气液固三相催化反应.  相似文献   

2.
使用Nb2O5纳米线(W-Nb2O5)和介孔Nb2O5(S-Nb2O5)两种载体负载金属Pd,制备了Pd/W-Nb2O5和Pd/S-Nb2O5两种催化剂对肉桂醛(CMA)进行催化还原,考察了催化剂的活性和选择性。以乙醇为反应溶剂,催化剂用量0.10 g,80 oC,2MPa H2压力下反应6 h,Pd/W-Nb2O5对CMA的转化率为99%,HCMA的选择性为65%。Pd/S-Nb2O5在相同条件下反应, CMA转化率为98%,HCMA选择性为84%。W-Nb2O5表面酸性过强,导致HCMA选择性变低。继续考察Pd/S-Nb2O5在不同条件下对CMA加氢反应的影响。结果显示温度,H2压力,催化剂载体Nb2O5的晶化温度对反应均有影响。  相似文献   

3.
使用Nb_2O_5纳米线(W-Nb_2O_5)和介孔Nb_2O_5(S-Nb_2O_5)两种载体负载金属Pd,制备了Pd/W-Nb_2O_5和Pd/S-Nb_2O_5两种催化剂,并对肉桂醛(CMA)进行催化还原,考察了催化剂的活性。结果显示:在以乙醇为反应溶剂,催化剂0.10 g,反应温度80℃,H2压力2 MPa的条件下反应6 h,Pd/W-Nb_2O_5对CMA的转化率为99%,HCMA(苯丙醛)的选择性为65%。Pd/S-Nb_2O_5在相同条件下对肉桂醛(CMA)进行催化还原,CMA转化率为98%,HCMA选择性为84%。W-Nb_2O_5表面酸性过强,导致HCMA选择性降低。  相似文献   

4.
曾伟  刘甲  张德谨  杨国强  张志炳 《化工学报》2020,71(11):4999-5006
使用沉淀沉积法及溶液浸渍法分别将Au和Pd纳米粒子负载在原子层沉积法制备的1cTiO2/SiO2载体上,制备出两种不同Pd负载量的Pd-Au双金属活性中心纳米催化剂。采用TEM、EDX、XPS对所制备的催化剂进行了详细的表征,确定了纳米粒子的形貌、Pd-Au元素的化学价态和组成。测试了该类催化剂在以氧气为氧源的环己烯环氧化反应中的活性和选择性,并对反应溶剂、共还原剂种类、反应温度等条件进行了筛选。在优化后的反应条件下考察了该催化剂对不同结构烯烃的适用性。对于环状烯烃,底物转化率均大于95%,环氧产物选择性均大于91%。催化剂在循环回收5次后,催化活性和反应选择性保持不变。  相似文献   

5.
合成了负载金属催化剂并用于催化辛烯醛加氢制备异辛醇,考察了不同载体和负载金属对催化加氢的影响,结果表明Pd/MCM-41是具有最佳加氢催化性能的催化剂。在m(辛烯醛)=2.0g、催化剂m(Pd/MCM-41)=0.1g(Pd质量分数为1.0%)、反应温度240℃、反应时间7h、氢气压力6MPa的较佳反应条件下,辛烯醛的转化率和异辛醇的选择性分别为100%和98.9%,所得产品易与催化剂分离且催化剂具有较好的重复使用性能,在催化剂重复使用5次后,加氢反应的转化率和选择性仍然高达96.6%和95.5%。采用XRD和TEM手段对使用前后的Pd/MCM-41催化剂进行了表征,结果表明使用前后的催化剂在形貌和结构上没有发生明显的变化。  相似文献   

6.
张丽丽 《工业催化》2014,22(6):473-477
为了开发苯酚加氢制环己酮高效催化剂,将脲在550 ℃高温聚合,制备了片层状氮化碳催化剂载体g-CN;负载钯纳米粒子后,得到Pd/g-CN催化剂。采用红外光谱、X射线粉末衍射、透射电镜和X射线光电子能谱对催化剂进行表征。将Pd/g-CN催化剂用于催化苯酚水相加氢,考察了不同载体和反应温度对催化性能的影响,并对催化剂重复使用性能进行研究。结果表明,载体g-CN含有大量的含N基团,能有效稳定金属纳米粒子,从而获得粒径较小、分散较好的Pd纳米粒子;同时,g-CN具有较强碱性,有利于苯酚的吸附,可提高苯酚的反应速率和环己酮选择性。采用负载Pd质量分数2%的Pd/g-CN催化剂,在反应温度80 ℃、反应压力0.1 MPa、n(Pd)∶n(苯酚)=0.02、苯酚1 mmol、水3 mL和反应时间3 h条件下,苯酚可完全转化,环己酮选择性高达99%。Pd/g-CN催化剂制备工艺简单,原料价廉,催化性能优异。  相似文献   

7.
采用氧化石墨烯(GO)、还原石墨烯(rGO)和硝酸活化处理的活性碳(C-HNO3)负载Pd纳米粒子制得了3种Pd基催化剂Pd/GO、Pd/rGO和Pd/C-HNO3。通过XRD、XPS、N2吸附-脱附、SEM、TEM、HRTEM对其进行了表征。以商用Pd/C催化剂(Pd质量分数10%)作为对照,考察3种催化剂催化硝基苯无溶剂加氢的活性和选择性。结果表明,rGO纳米片高效网络结构和Pd纳米粒子之间的良好的耦合作用使得Pd/rGO在3种催化剂中表现出最高的Pd金属比表面积(178.37 m2/g)和分散度(43.75%)。在Pd/rGO催化剂质量浓度为10 g/L,1 MPa H2,90 ℃,5 mL 硝基苯的反应条件下,苯胺的产率随反应时间增加呈上升趋势。反应100 min后,硝基苯完全转化,苯胺产率达到100%。循环使用9次后,Pd/rGO仍可催化硝基苯高效转化获得97.1%的苯胺产率。  相似文献   

8.
采用氧化石墨烯(GO)、还原石墨烯(rGO)和硝酸活化处理的活性碳(C-HNO3)负载Pd纳米粒子制得了3种Pd基催化剂Pd/GO、Pd/rGO和Pd/C-HNO3。通过XRD、XPS、N2吸附-脱附、SEM、TEM、HRTEM对其进行了表征。以商用Pd/C催化剂(Pd质量分数10%)作为对照,考察3种催化剂催化硝基苯无溶剂加氢的活性和选择性。结果表明,rGO纳米片高效网络结构和Pd纳米粒子之间的良好的耦合作用使得Pd/rGO在3种催化剂中表现出最高的Pd金属比表面积(178.37 m2/g)和分散度(43.75%)。在Pd/rGO催化剂质量浓度为10 g/L,1 MPa H2,90 ℃,5 mL 硝基苯的反应条件下,苯胺的产率随反应时间增加呈上升趋势。反应100 min后,硝基苯完全转化,苯胺产率达到100%。循环使用9次后,Pd/rGO仍可催化硝基苯高效转化获得97.1%的苯胺产率。  相似文献   

9.
以多壁碳纳米管和椰壳活性炭为载体,分别采用溶胶固载法和等体积浸渍法制备负载型纳米金催化剂。采用N_2吸附-脱附、XRD、TEM和XPS等对碳载体和纳米金催化剂样品进行表征,并研究纳米金催化剂在肉桂醛选择性加氢反应中的催化性能。结果表明,HNO_3-H_2SO_4预处理可以增加碳载体表面的含氧基团和含氮基团,在肉桂醛加氢反应中,溶胶固载法得到的更小尺寸的纳米金催化剂对C=C双键加氢选择性高,等体积浸渍法制备的纳米金催化剂对C=O双键加氢选择性高,椰壳活性炭为载体催化剂的C=C加氢催化活性优于多壁碳纳米管。  相似文献   

10.
以实验室自制的含季铵基团的阳离子聚合物(COPQA)为模板剂合成了高比表面积、具有花状形貌的丝光沸石纳米片(NS-MOR),以此为载体采用离子交换方法制备了负载Pd催化剂(Pd/NS-MOR)。对沸石及其负载的Pd催化剂进行X 射线多晶衍射、N2物理吸脱附、SEM、TEM及X射线光电子能谱分析,结果显示,Pd/NS-MOR催化剂载体中小粒径Pd0和Pd2+物种高度分散在丝光沸石纳米片表面,而在γ-Al2O3负载的Pd催化剂(Pd/γ-Al2O3)中仅有Pd2+物种。因此,以2-苯基吡啶和苯甲醛为反应原料,实现了2-苯基吡啶的C2—H和C6—H键的同时活化,Pd/NS-MOR的催化活性和双酰基化产物选择性(92%)远高于Pd/γ-Al2O3。作为对比,以Pd(NO3)2、Pd(OAc)2、Pd(PhCN)2Cl2为催化剂的2-苯基吡啶C—H键活化反应中均无法得到双酰基化产物。另外,Pd/NS-MOR不仅具有良好的底物兼容性,而且循环使用6次后仍保持较高的2-苯基吡啶的转化率(95%)和双酰基化产物的选择性(85%)。  相似文献   

11.
采用不同预处理方式对活性炭表面进行改性,并制备钯炭催化剂。对活性炭的比表面积、孔结构等物理性质和含氧官能团种类以及钯炭催化剂进行表征,探究预处理对活性炭表面物化性能产生的变化和对钯炭催化剂在肉桂醛加氢反应中催化活性的影响。结果表明,氧化预处理使活性炭的比表面积和孔容下降,使钯炭催化剂上的钯粒子尺寸相对更小;碱预处理有一定的扩孔作用,使钯炭催化剂上的钯粒子尺寸更大。在肉桂醛加氢反应中,钯粒子尺寸越小的催化剂催化活性更高,而钯粒子尺寸更大的催化剂上肉桂醇选择性更高。  相似文献   

12.
A set of microporous carbons have been used to prepare Pd/carbon catalysts. The properties of the raw materials have been determined in terms of texture and surface chemistry. A deposition precipitation method has been employed to prepare the final catalysts, leading to well-dispersed palladium particles. The influence of the textural properties as well as the surface chemistry properties has been studied and a correlation was found between the surface in the pores of the support and the Pd dispersion. The chemistry surface properties of the Pd/carbon catalysts were found similar, despite differences in the case of the starting raw materials. The hydrogenation of cinnamaldehyde has been studied and the results obtained favourably compare with those already published. Turnover frequencies were similar whatever the catalyst. High selectivities close to 90% in hydrocinnamaldehyde were obtained at 90% conversion.  相似文献   

13.
Carbon Nanofibers: Catalytic Synthesis and Applications   总被引:25,自引:0,他引:25  
Carbon nanofibers (diameter range, 3-100 nm; length range, 0.1-1000 µm) have been known for a long time as a nuisance that often emerges during catalytic conversion of carbon-containing gases. The recent outburst of interest in these graphitic materials originates from their potential for unique applications as well as their chemical similarity to fullerenes and carbon nanotubes. In this review, we focus on the growth of nanofibers using metallic particles as a catalyst to precipitate the graphitic carbon. First, we summarize some of the earlier literature that has contributed greatly to understand the nucleation and growth of carbon nanofibers and nanotubes. Thereafter, we describe in detail recent progress to control the fiber surface structure, texture, and growth into mechanically strong agglomerates. It is argued that carbon nanofibers are unique high-surface-area materials (~200 m2/g) that can expose exclusively either basal graphite planes or edge planes. Subsequently, we will present the recently explored applications of carbon nanofibers: polymer additives, gas storage materials, and catalyst supports. The latter application is described in detail. It is shown that the graphite surface structure and the lyophilicity play a crucial role during metal emplacement and catalytic use in liquid-phase catalysis. A case in point is fiber-supported Pd catalysts for nitrobenzene hydrogenation. Finally, we summarize issues with respect to the large-scale production of carbon nanofibers, including production cost estimates and research items to be dealt with in future work.  相似文献   

14.
《Catalysis Reviews》2013,55(4):481-484
Carbon nanofibers (diameter range, 3–100 nm; length range, 0.1–1000 µm) have been known for a long time as a nuisance that often emerges during catalytic conversion of carbon-containing gases. The recent outburst of interest in these graphitic materials originates from their potential for unique applications as well as their chemical similarity to fullerenes and carbon nanotubes. In this review, we focus on the growth of nanofibers using metallic particles as a catalyst to precipitate the graphitic carbon. First, we summarize some of the earlier literature that has contributed greatly to understand the nucleation and growth of carbon nanofibers and nanotubes. Thereafter, we describe in detail recent progress to control the fiber surface structure, texture, and growth into mechanically strong agglomerates. It is argued that carbon nanofibers are unique high-surface-area materials (?200 m2/g) that can expose exclusively either basal graphite planes or edge planes. Subsequently, we will present the recently explored applications of carbon nanofibers: polymer additives, gas storage materials, and catalyst supports. The latter application is described in detail. It is shown that the graphite surface structure and the lyophilicity play a crucial role during metal emplacement and catalytic use in liquid-phase catalysis. A case in point is fiber-supported Pd catalysts for nitrobenzene hydrogenation. Finally, we summarize issues with respect to the large-scale production of carbon nanofibers, including production cost estimates and research items to be dealt with in future work.  相似文献   

15.
以不同浓度的KMnO4溶液预处理的炭黑为载体,通过沉淀共还原法合成了3种Pd1Ni1/ACx (x=3,5,7)催化剂,并将3种催化剂与商业Pd/C催化剂进行了性能对比。用XPS、ICP、XRD和TEM对催化剂了进行表征。结果表明:Pd1Ni1/AC5的Pd负载量(质量分数,下同)最大(3.66%),Pd晶粒的平均粒径最小(4.71 nm),且均匀地分布在KMnO4氧化处理后的碳载体上,活性位点较多;XRD显示,3种Pd1Ni1/ACx催化剂中的Ni均以无定形存在。在电化学性能测试中,3种催化剂均表现出比商业Pd/C更好的电化学稳定性和存活率;其中,Pd1Ni1/AC5电化学活性表面积达62.21 m2/gPd,且乙醇催化活性为1797.85 A/gPd。  相似文献   

16.
Palladium catalysts supported on carbon nanofibers (CNFs) and XC-72 carbon were developed by chemically reducing palladium chloride with ethylene glycol. The morphologies and crystal structure of the Pd/CNF catalyst and Pd/XC-72 catalyst were investigated by TEM and XRD, respectively. The electrocatalytical activity of the catalysts was examined via cyclic voltammetry testing techniques. The performance of the air electrodes was examined by linear polarization methods. Magnesium air fuel cells with Pd/CNF catalyst and Pd/XC-72 catalyst were fabricated and characterized. The results showed that the Pd/CNF catalyst had higher catalytic activity for the oxygen reduction reaction and achieved better performance of the magnesium air fuel cell compared with the Pd/XC-72 catalyst.  相似文献   

17.
Palladium particles supported on porous carbon of 20 and 50 nm pore diameters were prepared and applied to the direct formic acid fuel cell (DFAFC). Four different anode catalysts with Pd loading of 30 and 50 wt% were synthesized by using impregnation method and the cell performance was investigated with changing experimental variables such as anode catalyst loading, formic acid concentration, operating temperature and oxidation gas. The BET surface areas of 20 nm, 30 wt% and 20 nm, 50 wt% Pd/porous carbon anode catalysts were 135 and 90 m2/g, respectively. The electro-oxidation of formic acid was examined in terms of cell power density. Based on the same amount of palladium loading with 1.2 or 2 mg/cm2, the porous carbon-supported palladium catalysts showed higher cell performance than unsupported palladium catalysts. The 20 nm, 50 wt% Pd/porous carbon anode catalyst generated the highest maximum power density of 75.8 mW/cm2 at 25 °C. Also, the Pd/porous carbon anode catalyst showed less deactivation at the high formic acid concentrations. When the formic acid concentration was increased from 3 to 9 M, the maximum power density was decreased from 75.8 to 40.7 mW/cm2 at 25 °C. Due to the high activity of Pd/porous carbon catalyst, the cell operating temperature has less effect on DFAFC performance.  相似文献   

18.
5 wt% Pd catalysts supported on platelet carbon nanofibers has been prepared by incipient wetness impregnation. Both the calcination and the reduction temperature have a significant effect on the dispersion of palladium and it was found that about 3 nm sized Pd nanoparticles can be obtained at a calcination and reduction temperature of 250 °C and 150 °C, respectively. Pd catalysts have been applied to catalyze Heck reactions of various activated and non-activated aryl substrates. The activity increased exponentially with a decrease in Pd particle size. The high surface area, mesoporous structure of carbon nanofiber and highly dispersed palladium species on carbon nanofibers makes up one of the most active and reusable heterogeneous catalysts for Heck coupling reactions. Pd nanoparticles supported on platelet CNFs appear to be an excellent catalyst due to high activity, low sensitivity towards oxygen, almost no or low issues with leaching and high stability in multi-cycles.  相似文献   

19.
We report here, for the first time, a simple method to prepare ordered mesoporous carbon containing separate gold, and palladium nanoparticles (AuPd-OMC). Furthermore, the new catalysts were evaluated in the selective hydrogenation of cinnamaldehyde under atmospheric conditions. In comparison with the monometallic catalysts, the AuPd-OMC exhibited excellent catalytic activity (96.2% selectivity for hydro cinnamaldehyde). The observed synergistic effects were ascribed to hydrogen spillover. The Pd nanoparticles possess the main active sites that formed the active hydrogen species, while the Au nanoparticles served as active hydrogen acceptors and diluted the Pd active sites in order to suppress the deep hydrogenation.  相似文献   

20.
采用液相还原法分别制备了碳纳米管(MWCNT)、活性炭(AC)、碳纳米纤维(CNF)和炭气凝胶(CA)负载质量分数3%的Pt催化剂,并对催化剂的结构和形貌进行了XRD和TEM等表征。以肉桂醛加氢作为探针反应,研究了其催化肉桂醛加氢的活性和产物选择性。结果表明,炭材料的结构对其催化肉桂醛加氢行为具有重要影响,纳米炭材料催化剂(Pt/MWCNT、Pt/CNF)表现出较高的CO选择性加氢行为,而无定形碳催化剂表现为C=C选择性加氢,同时Pt/MWCNT的催化活性最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号