首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium‐ion capacitors (LICs) are hybrid energy storage devices that have the potential to bridge the gap between conventional high‐energy lithium‐ion batteries and high‐power capacitors by combining their complementary features. The challenge for LICs has been to improve the energy storage at high charge?discharge rates by circumventing the discrepancy in kinetics between the intercalation anode and capacitive cathode. In this article, the rational design of new nanostructured LIC electrodes that both exhibit a dominating capacitive mechanism (both double layer and pseudocapacitive) with a diminished intercalation process, is reported. Specifically, the electrodes are a 3D interconnected TiC nanoparticle chain anode, synthesized by carbothermal conversion of graphene/TiO2 hybrid aerogels, and a pyridine‐derived hierarchical porous nitrogen‐doped carbon (PHPNC) cathode. Electrochemical properties of both electrodes are thoroughly characterized which demonstrate their outstanding high‐rate capabilities. The fully assembled PHPNC//TiC LIC device delivers an energy density of 101.5 Wh kg?1 and a power density of 67.5 kW kg?1 (achieved at 23.4 Wh kg?1), and a reasonably good cycle stability (≈82% retention after 5000 cycles) within the voltage range of 0.0?4.5 V.  相似文献   

2.
Hybrid metal–organic frameworks (MOFs) demonstrate great promise as ideal electrode materials for energy‐related applications. Herein, a well‐organized interleaved composite of graphene‐like nanosheets embedded with MnO2 nanoparticles (MnO2@C‐NS) using a manganese‐based MOF and employed as a promising anode material for Li‐ion hybrid capacitor (LIHC) is engineered. This unique hybrid architecture shows intriguing electrochemical properties including high reversible specific capacity 1054 mAh g?1 (close to the theoretical capacity of MnO2, 1232 mAh g?1) at 0.1 A g?1 with remarkable rate capability and cyclic stability (90% over 1000 cycles). Such a remarkable performance may be assigned to the hierarchical porous ultrathin carbon nanosheets and tightly attached MnO2 nanoparticles, which provide structural stability and low contact resistance during repetitive lithiation/delithiation processes. Moreover, a novel LIHC is assembled using a MnO2@C‐NS anode and MOF derived ultrathin nanoporous carbon nanosheets (derived from other potassium‐based MOFs) cathode materials. The LIHC full‐cell delivers an ultrahigh specific energy of 166 Wh kg?1 at 550 W kg?1 and maintained to 49.2 Wh kg?1 even at high specific power of 3.5 kW kg?1 as well as long cycling stability (91% over 5000 cycles). This work opens new opportunities for designing advanced MOF derived electrodes for next‐generation energy storage devices.  相似文献   

3.
Microporous nitrogen‐rich carbon fibers (HAT‐CNFs) are produced by electrospinning a mixture of hexaazatriphenylene‐hexacarbonitrile (HAT‐CN) and polyvinylpyrrolidone and subsequent thermal condensation. Bonding motives, electronic structure, content of nitrogen heteroatoms, porosity, and degree of carbon stacking can be controlled by the condensation temperature due to the use of the HAT‐CN with predefined nitrogen binding motives. The HAT‐CNFs show remarkable reversible capacities (395 mAh g?1 at 0.1 A g?1) and rate capabilities (106 mAh g?1 at 10 A g?1) as an anode material for sodium storage, resulting from the abundant heteroatoms, enhanced electrical conductivity, and rapid charge carrier transport in the nanoporous structure of the 1D fibers. HAT‐CNFs also serve as a series of model compounds for the investigation of the contribution of sodium storage by intercalation and reversible binding on nitrogen sites at different rates. There is an increasing contribution of intercalation to the charge storage with increasing condensation temperature which becomes less active at high rates. A hybrid sodium‐ion capacitor full cell combining HAT‐CNF as the anode and salt‐templated porous carbon as the cathode provides remarkable performance in the voltage range of 0.5–4.0 V (95 Wh kg?1 at 0.19 kW kg?1 and 18 Wh kg?1 at 13 kW kg?1).  相似文献   

4.
Organic hybrid supercapacitors that consist of a battery electrode and a capacitive electrode show greatly improved energy density, but their power density is generally limited by the poor rate capability of battery‐type electrodes. In addition, flexible organic hybrid supercapacitors are rarely reported. To address the above issues, herein an in‐plane assembled orthorhombic Nb2O5 nanorod film anode with high‐rate Li+ intercalation to develop a flexible Li‐ion hybrid capacitor (LIC) is reported. The binder‐/additive‐free film exhibits excellent rate capability (≈73% capacity retention with the rate increased from 0.5 to 20 C) and good cycling stability (>2500 times). Kinetic analyses reveal that the high rate performance is mainly attributed to the excellent in‐plane assembly of interconnected single‐crystalline Nb2O5 nanorods on the current collector, ensuring fast electron transport, facile Li‐ion migration in the porous film, and greatly reduced ion‐diffusion length. Using such a Nb2O5 film as anode and commercial activated carbon as cathode, a flexible LIC is designed. It delivers both high gravimetric and high volumetric energy/power densities (≈95.55 Wh kg?1/5350.9 W kg?1; 6.7 mW h cm?3/374.63 mW cm?3), surpassing previous typical Li‐intercalation electrode‐based LICs. Furthermore, this LIC device still keeps good electrochemical attributes even under serious bending states (30°–180°).  相似文献   

5.
Potassium‐ion hybrid capacitors (PIHCs) shrewdly combine a battery‐type anode and a capacitor‐type cathode, exhibiting an energy density close to that of potassium ion batteries and a comparable power density of supercapacitors. However, the rosy scenario is compromised by the sluggish kinetics in the PIHCs device. Herein, the kinetics enhanced nitrogen‐doped hierarchical porous hollow carbon spheres (NHCS) are synthesized and successfully applied to PIHCs. As for the K half‐cell, NHCS anchored with sodium alginate delivers excellent electrochemical performance. Further evaluation shows that the binder can significantly affect the potassium storage performance of NHCS by adjusting the coatability and ionic conductivity of the NHCS anode. Moreover, kinetic analysis and density functional theory calculations reveal the origin of the superior electrochemical properties of NHCS. As expected, an advanced PIHC device is assembled with a NHCS anode and an activated NHCS cathode, demonstrating an exceptionally high energy/power density (114.2 Wh kg?1 and 8203 W kg?1), along with a long‐life capability. The successful construction of high‐performance PIHCs in this work opens a new avenue for the development and application of PIHCs in the future.  相似文献   

6.
Sodium‐ion hybrid capacitors (SIHCs) can potentially combine the virtues of high‐energy density of batteries and high‐power output as well as long cycle life of capacitors in one device. The key point of constructing a high‐performance SIHC is to couple appropriate anode and cathode materials, which can well match in capacity and kinetics behavior simultaneously. In this work, a novel SIHC, coupling a titanium dioxide/carbon nanocomposite (TiO2/C) anode with a 3D nanoporous carbon cathode, which are both prepared from metal–organic frameworks (MOFs, MIL‐125 (Ti) and ZIF‐8, respectively), is designed and fabricated. The robust architecture and extrinsic pseudocapacitance of TiO2/C nanocomposite contribute to the excellent cyclic stability and rate capability in half‐cell. Hierarchical 3D nanoporous carbon displays superior capacity and rate performance. Benefiting from the merits of structures and performances of anode and cathode materials, the as‐built SIHC achieves a high energy density of 142.7 W h kg?1 and a high power output of 25 kW kg?1 within 1–4 V, as well as an outstanding life span of 10 000 cycles with over 90% of the capacity retention. The results make it competitive in high energy and power–required electricity storage applications.  相似文献   

7.
A novel synergistic TiO2‐MoO3 (TO‐MO) core–shell nanowire array anode has been fabricated via a facile hydrothermal method followed by a subsequent controllable electrodeposition process. The nano‐MoO3 shell provides large specific capacity as well as good electrical conductivity for fast charge transfer, while the highly electrochemically stable TiO2 nanowire core (negligible volume change during Li insertion/desertion) remedies the cycling instability of MoO3 shell and its array further provides a 3D scaffold for large amount electrodeposition of MoO3. In combination of the unique electrochemical attributes of nanostructure arrays, the optimized TO‐MO hybrid anode (mass ratio: ca. 1:1) simultaneously exhibits high gravimetric capacity (ca. 670 mAh g?1; approaching the hybrid's theoretical value), excellent cyclability (>200 cycles) and good rate capability (up to 2000 mA g?1). The areal capacity is also as high as 3.986 mAh cm?2, comparable to that of typical commercial LIBs. Furthermore, the hybrid anode was assembled for the first time with commercial LiCoO2 cathode into a Li ion full cell, which shows outstanding performance with maximum power density of 1086 W kgtotal ?1 (based on the total mass of the TO‐MO and LiCoO2) and excellent energy density (285 Wh kgtotal ?1) that is higher than many previously reported metal oxide anode‐based Li full cells.  相似文献   

8.
Rechargeable aqueous Zn‐based batteries, benefiting from their good reliability, low cost, high energy/power densities, and ecofriendliness, show great potential in energy storage systems. However, the poor cycling performance due to the formation of Zn dendrites greatly hinders their practical applications. In this work, a trilayer 3D CC‐ZnO@C‐Zn anode is obtained by in situ growing ZIFs (zeolitic‐imidazolate frameworks) derived ZnO@C core–shell nanorods on carbon cloth followed by Zn deposition, which exhibits excellent antidendrite performance. Using CC‐ZnO@C‐Zn as the anode and a branch‐like Co(CO3)0.5(OH)x·0.11H2O@CoMoO4 (CC‐CCH@CMO) as the cathode, a Zn–Co battery is rationally designed, displaying excellent energy/power densities (235 Wh kg?1, 12.6 kW kg?1) and remarkable cycling performance (71.1% after 5000 cycles). Impressively, when using a gel electrolyte, a highly customizable, fiber‐shaped flexible all‐solid‐state Zn–Co battery is assembled for the first time, which presents a high energy density of 4.6 mWh cm?3, peak power density of 0.42 W cm?3, and long durability (82% capacity retention after 1600 cycles) as well as excellent flexibility. The unique 3D electrode design in this study provides a novel approach to achieve high‐performance Zn‐based batteries, showing promising applications in flexible and portable energy‐storage systems.  相似文献   

9.
High capacity electrodes based on a Si composite anode and a layered composite oxide cathode, Ni‐rich Li[Ni0.75Co0.1Mn0.15]O2, are evaluated and combined to fabricate a high energy lithium ion battery. The Si composite anode, Si/C‐IWGS (internally wired with graphene sheets), is prepared by a scalable sol–gel process. The Si/C‐IWGS anode delivers a high capacity of >800 mAh g?1 with an excellent cycling stability of up to 200 cycles, mainly due to the small amount of graphene (~6 wt%). The cathode (Li[Ni0.75Co0.1Mn0.15]O2) is structurally optimized (Ni‐rich core and a Ni‐depleted shell with a continuous concentration gradient between the core and shell, i.e., a full concentration gradient, FCG, cathode) so as to deliver a high capacity (>200 mAh g?1) with excellent stability at high voltage (~4.3 V). A novel lithium ion battery system based on the Si/C‐IWGS anode and FCG cathode successfully demonstrates a high energy density (240 Wh kg?1 at least) as well as an unprecedented excellent cycling stability of up to 750 cycles between 2.7 and 4.2 V at 1C. As a result, the novel battery system is an attractive candidate for energy storage applications demanding a high energy density and long cycle life.  相似文献   

10.
Mg batteries as the most typical multivalent batteries are attracting increasing attention because of resource abundance, high volumetric energy density, and smooth plating/stripping of Mg anodes. However, current limitations for the progress of Mg batteries come from the lack of high voltage electrolytes and fast Mg‐insertable structure prototypes. In order to improve their energy or power density, hybrid systems combining Li‐driven cathode reaction with Mg anode process appear to be a potential solution by bypassing the aforementioned limitations. Here, FeS x (x = 1 or 2) is employed as conversion cathode with 2–4 electron transfers to achieve a maximum energy density close to 400 Wh kg?1, which is comparable with that of Li‐ion batteries but without serious dendrite growth and polysulphide dissolution. In situ formation of solid electrolyte interfaces on both sulfide and Mg electrodes is likely responsible for long‐life cycling and suppression of S‐species passivation at Mg anodes. Without any decoration on the cathode, electrolyte additive, or anode protection, a reversible capacity of more than 200 mAh g?1 is still preserved for Mg/FeS2 after 200 cycles.  相似文献   

11.
High performance of electrochemical energy storage devices depends on the smart structure engineering of electrodes, including the tailored nanoarchitectures of current collectors and subtle hybridization of active materials. To improve the anode supercapacitive performance of Fe2O3 for high‐voltage asymmetric supercapacitors, here, a hybrid core‐branch nanoarchitecture is proposed by integrating Fe2O3 nanoneedles on ultrafine Ni nanotube arrays (NiNTAs@Fe2O3 nanoneedles). The fabrication process employs a bottom‐up strategy via a modified template‐assisted method starting from ultrafine ZnO nanorod arrays, ensuring the formation of ultrafine Ni nanotube arrays with ultrathin tube walls. The novel developed NiNTAs@Fe2O3 nanoneedle electrode is demonstrated to be a highly capacitive anode (418.7 F g?1 at 10 mV s?1), matching well with the similarly built NiNTAs@MnO2 nanosheet cathode. Contributed by the efficient electron collection paths and short ion diffusion paths in the uniquely designed anode and cathode, the asymmetric supercapacitors exhibit an excellent maximum energy density of 34.1 Wh kg?1 at the power density of 3197.7 W kg?1 in aqueous electrolyte and 32.2 Wh kg?1 at the power density of 3199.5 W kg?1 in quasi‐solid‐state gel electrolyte.  相似文献   

12.
3D graphene, as a light substrate for active loadings, is essential to achieve high energy density for aqueous Zn‐ion batteries, yet traditional synthesis routes are inefficient with high energy consumption. Reported here is a simplified procedure to transform the raw graphite paper directly into the graphene‐like carbon film (GCF). The electrochemically derived GCF contains a 2D–3D hybrid network with interconnected graphene sheets, and offers a highly porous structure. To realize high energy density, the Na:MnO2/GCF cathode and Zn/GCF anode are fabricated by electrochemical deposition. The GCF‐based Zn‐ion batteries deliver a high initial discharge capacity of 381.8 mA h g?1 at 100 mA g?1 and a reversible capacity of 188.0 mA h g?1 after 1000 cycles at 1000 mA g?1. Moreover, a recorded energy density of 511.9 Wh kg?1 is obtained at a power density of 137 W kg?1. The electrochemical kinetics measurement reveals the high capacitive contribution of the GCF and a co‐insertion/desertion mechanism of H+ and Zn2+ ions. First‐principles calculations are also carried out to investigate the effect of Na+ doping on the electrochemical performance of layered δ‐MnO2 cathodes. The results demonstrate the attractive potential of the GCF substrate in the application of the rechargeable batteries.  相似文献   

13.
Aprotic Li–O2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the passivation of cathode surface by the insulating Li2O2 product. Herein, a self‐standing and hierarchically porous carbon framework is reported with Co nanoparticles embedded within developed by 3D‐printing of cobalt‐based metal–organic framework (Co‐MOF) using an extrusion‐based printer, followed by appropriate annealing. The novel self‐standing framework possesses good conductivity and necessary mechanical stability, so that it can act as a porous conducting matrix. Moreover, the porous framework consists of abundant micrometer‐sized pores formed between Co‐MOF‐derived carbon flakes and meso‐ and micropores formed within the flakes, which together significantly benefit the efficient deposition of Li2O2 particles and facilitate their decomposition due to the confinement of insulating Li2O2 within the pores and the presence of Co electrocatalysts. Therefore, the self‐standing porous architecture significantly enhances the cell's practical specific energy, achieving a high value of 798 Wh kg?1cell. This study provides an effective approach to increase the practical specific energy for Li–O2 batteries by constructing 3D‐printed framework cathodes.  相似文献   

14.
Flexible energy storage devices are critical components for emerging flexible and wearable electronics. Improving the electrochemical performance of flexible energy storage devices depends largely on development of novel electrode architectures and new systems. Here, a new class of flexible energy storage device called flexible sodium‐ion pseudocapacitors is developed based on 3D‐flexible Na2Ti3O7 nanosheet arrays/carbon textiles (NTO/CT) as anode and flexible reduced graphene oxide film (GFs) as cathode without metal current collectors or conducting additives. The NTO/CT anode with advanced electrode architectures is fabricated by directly growing Na2Ti3O7 nanosheet arrays on carbon textiles with robust adhesion through a simple hydrothermal process. The flexible GF//NTO/CT configuration achieves a high energy density of 55 Wh kg?1 and high power density of 3000 W kg?1. Taking the fully packaged flexible sodium‐ion pseudocapacitors into consideration, the maximum practical volumetric energy density and power density reach up to 1.3 mWh cm?3 and 70 mW cm?3, respectively. In addition, the flexible GF//NTO/CT device demonstrates a stable electrochemical performances with almost 100% capacitance retention under harsh mechanical deformation.  相似文献   

15.
High‐energy‐density lithium metal batteries are considered the most promising candidates for the next‐generation energy storage systems. However, conventional electrolytes used in lithium‐ion batteries can hardly meet the demand of the lithium metal batteries due to their intrinsic instability for Li metal anodes and high‐voltage cathodes. Herein, an ester‐based electrolyte with tris(trimethylsilyl)phosphate additive that can form stable solid electrolyte interphases on the anode and cathode is reported. The additive decomposes before the ester solvent and enables the formation of P‐ and Si‐rich interphases on both electrodes that are ion conductive and robust. Thus, lithium metal batteries with a high‐specific‐energy of 373 Wh kg?1 can exhibit a long lifespan of over 80 cycles under practical conditions, including a low negative/positive capacity ratio of 2.3, high areal capacity of 4.5 mAh cm?2 for cathode, high‐voltage of 4.5 V, and lean electrolyte of 2.8 µL mAh?1. A 4.5 V pouch cell is further assembled to demonstrate the practical application of the tris(trimethylsilyl)phosphate additive with an areal capacity of 10.2 and 9.4 mAh cm?2 for the anode and cathode, respectively. This work is expected to provide an effective electrolyte optimizing strategy compatible with current lithium ion battery manufacturing systems and pave the way for the next‐generation Li metal batteries with high specific energy and energy density.  相似文献   

16.
2D materials are ideal for constructing flexible electrochemical energy storage devices due to their great advantages of flexibility, thinness, and transparency. Here, a simple one‐step hydrothermal process is proposed for the synthesis of nickel–cobalt phosphate 2D nanosheets, and the structural influence on the pseudocapacitive performance of the obtained nickel–cobalt phosphate is investigated via electrochemical measurement. It is found that the ultrathin nickel–cobalt phosphate 2D nanosheets with an Ni/Co ratio of 4:5 show the best electrochemical performance for energy storage, and the maximum specific capacitance up to 1132.5 F g?1. More importantly, an aqueous and solid‐state flexible electrochemical energy storage device has been assembled. The aqueous device shows a high energy density of 32.5 Wh kg?1 at a power density of 0.6 kW kg?1, and the solid‐state device shows a high energy density of 35.8 Wh kg?1 at a power density of 0.7 kW kg?1. These excellent performances confirm that the nickel–cobalt phosphate 2D nanosheets are promising materials for applications in electrochemical energy storage devices.  相似文献   

17.
A facile and novel one‐step method of growing nickel‐cobalt layered double hydroxide (Ni‐Co LDH) hybrid films with ultrathin nanosheets and porous nanostructures on nickel foam is presented using cetyltrimethylammonium bromide as nanostructure growth assisting agent but without any adscititious alkali sources and oxidants. As pseudocapacitors, the as‐obtained Ni‐Co LDH hybrid film‐based electrodes display a significantly enhanced specific capacitance (2682 F g?1 at 3 A g?1, based on active materials) and energy density (77.3 Wh kg?1 at 623 W kg?1), compared to most previously reported electrodes based on nickel‐cobalt oxides/hydroxides. Moreover, the asymmetric supercapacitor, with the Ni‐Co LDH hybrid film as the positive electrode material and porous freeze‐dried reduced graphene oxide (RGO) as the negative electrode material, exhibits an ultrahigh energy density (188 Wh kg?1) at an average power density of 1499 W kg?1 based on the mass of active material, which greatly exceeds the energy densities of most previously reported nickel or cobalt oxide/hydroxide‐based asymmetric supercapacitors.  相似文献   

18.
This work reports that natural graphite is capable of Na insertion and extraction with a remarkable reversibility using ether‐based electrolytes. Natural graphite (the most well‐known anode material for Li–ion batteries) has been barely studied as a suitable anode for Na rechargeable batteries due to the lack of Na intercalation capability. Herein, graphite is not only capable of Na intercalation but also exhibits outstanding performance as an anode for Na ion batteries. The graphite anode delivers a reversible capacity of ≈150 mAh g?1 with a cycle stability for 2500 cycles, and more than 75 mAh g?1 at 10 A g?1 despite its micrometer‐size (≈100 μm). An Na storage mechanism in graphite, where Na+‐solvent co‐intercalation occurs combined with partial pseudocapacitive behaviors, is revealed in detail. It is demonstrated that the electrolyte solvent species significantly affect the electrochemical properties, not only rate capability but also redox potential. The feasibility of graphite in a Na full cell is also confirmed in conjunction with the Na1.5VPO4.8F0.7 cathode, delivering an energy of ≈120 Wh kg?1 while maintaining ≈70% of the initial capacity after 250 cycles. This exceptional behavior of natural graphite promises new avenues for the development of cost‐effective and reliable Na ion batteries.  相似文献   

19.
2D MXenes have been widely applied in the field of electrochemical energy storage owning to their high electrical conductivity and large redox‐active surface area. However, electrodes made from multilayered MXene with small interlayer spacing exhibit sluggish kinetics with low capacity for sodium‐ion storage. Herein, Ti3C2 MXene with expanded and engineered interlayer spacing for excellent storage capability is demonstrated. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via Ti? S bonding, while pristine Ti3C2 is hardly to be intercalated. When the annealing temperature is 450 °C, the S atoms intercalated Ti3C2 (CT‐S@Ti3C2‐450) electrode delivers the improved Na‐ion capacity of 550 mAh g?1 at 0.1 A g?1 (≈120 mAh g?1 at 15 A g?1, the best MXene‐based Na+‐storage rate performance reported so far), and excellent cycling stability over 5000 cycles at 10 A g?1 by enhanced pseudocapacitance. The enhanced sodium‐ion storage capability has also been verified by theoretical calculations and kinetic analysis. Coupling the CT‐S@Ti3C2‐450 anode with commercial AC cathode, the assembled Na+ capacitor delivers high energy density (263.2 Wh kg?1) under high power density (8240 W kg?1), and outstanding cycling performance.  相似文献   

20.
Maricite NaFePO4 nanodots with minimized sizes (≈1.6 nm) uniformly embedded in porous N‐doped carbon nanofibers (designated as NaFePO4@C) are first prepared by electrospinning for maximized Na‐storage performance. The obtained flexible NaFePO4@C fiber membrane adherent on aluminum foil is directly used as binder‐free cathode for sodium‐ion batteries, revealing that the ultrasmall nanosize effect as well as a high‐potential desodiation process can transform the generally perceived electrochemically inactive maricite NaFePO4 into a highly active amorphous phase; meanwhile, remarkable electrochemical performance in terms of high reversible capacity (145 mA h g?1 at 0.2 C), high rate capability (61 mA h g?1 at 50 C), and unprecedentedly high cyclic stability (≈89% capacity retention over 6300 cycles) is achieved. Furthermore, the soft package Na‐ion full battery constructed by the NaFePO4@C nanofibers cathode and the pure carbon nanofibers anode displays a promising energy density of 168.1 Wh kg?1 and a notable capacity retention of 87% after 200 cycles. The distinctive 3D network structure of very fine NaFePO4 nanoparticles homogeneously encapsulated in interconnected porous N‐doped carbon nanofibers, can effectively improve the active materials' utilization rate, facilitate the electrons/Na+ ions transport, and strengthen the electrode stability upon prolonged cycling, leading to the fascinating Na‐storage performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号