首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2D conductive nanosheets are central to electronic applications because of their large surface areas and excellent electronic properties. However, tuning the multifunctions and hydrophilicity of conductive nanosheets are still challenging. Herein, a green strategy is developed for fabricating conductive, redox‐active, water‐soluble nanosheets via the self‐assembly of poly(3,4‐ethylenedioxythiophene) (PEDOT) on the polydopamine‐reduced and sulfonated graphene oxide (PSGO) template. The conductivity and hydrophilicity of nanosheets are highly improved by PSGO. The nanosheets are redox active due to the abundant catechol groups and can be used as versatile nanofillers in developing conductive and adhesive hydrogels. The nanosheets create a mussel‐inspired redox environment inside the hydrogel networks and endow the hydrogel with long‐term and repeatable adhesiveness. This hydrogel is biocompatible and can be implanted for biosignals detection in vivo. This mussel‐inspired strategy for assembling 2D nanosheets can be adapted for producing diverse multifunctional nanomaterials, with various potential applications in bioelectronics.  相似文献   

2.
Fibrous networks of biopolymers possess unique properties: mechanical stability at low concentrations, an extremely porous architecture, and strong stiffening at small deformations. An outstanding challenge is to find methods that allow to tailor the mechanical properties of these bionetworks or their synthetic equivalents without changing the polymer concentration, which simultaneously changes all other hydrogel properties. Here, networks of dilute (0.1 wt.%) fibrous hydrogels are prepared and crosslink them with functional rod-shaped nanoparticles. The crosslinking is observed to induce an architectural change that strongly affects the mechanical properties of the hydrogels with a 40-fold increase in stiffness. The effect is strongest at the lowest polymer and particle concentrations (99.8% water) and is tailorable through tuning the crosslink density. Moreover, the nanoparticle components in the composite offer the opportunity to introduce additional functions; gels with magnetic and conductive properties are reported. However, through the generic crosslinking approach of a fibrous network with decorated nanoparticle crosslinkers as presented in this work, virtually any functionality may be introduced in highly responsive hydrogels, providing a guide to design next generations of multi-functional soft materials.  相似文献   

3.
Stretchable conductive hydrogels with simultaneous high mechanical strength/modulus, and ultrahigh, stable electrical conductivity are ideal for applications in soft robots, artificial skin, and bioelectronics, but to date, they are still very challenging to fabricate. Herein, sandwich-structured hybrid hydrogels based on layers of aramid nanofibers (ANFs) reinforced polyvinyl alcohol (PVA) hydrogels and a layer of silver nanowires (AgNWs)/PVA are fabricated by electrospinning combined with vacuum-assisted filtration. The hybrid ANF-PVA hydrogels exhibit excellent mechanical properties with the tensile modulus of 10.7–15.4 MPa, tensile strength of 3.3–5.5 MPa, and fracture energy up to 5.7 kJ m−2, primarily attributed to the strong hydrogen bonding interactions between PVA and ANFs and in-plane alignment of the fibrous structure. Rational design of heterogeneous structure endows the hydrogels with ultrahigh apparent electrical conductivity of 1.66 × 104 S m−1, among the highest electrical conductivities ever reported so far for conductive hydrogels. More importantly, this ultrahigh conductivity remains constant upon a broad range of applied strains from 0–90% and over 500 stretching cycles. Furthermore, the hydrogels exhibit excellent Joule heating and electromagnetic interference shielding performances due to the ultrahigh electrical conductivity. These mechanically strong, hybrid hydrogels with ultrahigh and strain-invariant electrical conductivity represent great promises for many important applications such as flexible electronics.  相似文献   

4.
导电聚合物及其在隐身技术中的应用   总被引:2,自引:1,他引:1  
介绍了导电聚合物的种类和性质,叙述了复合型导电聚合物和电子导电型聚合物的组成结构、导电机理及其制备方法,论述了导电聚合物在隐身技术中的研究和应用情况,简要总结了导电聚合物在隐身技术领域的发展方向.  相似文献   

5.
Wearable and implantable bioelectronics are receiving a great deal of attention because they offer huge promise in personalized healthcare. Currently available bioelectronics generally rely on external aids to form an attachment to the human body, which leads to unstable performance in practical applications. Self‐adhesive bioelectronics are highly desirable for ameliorating these concerns by offering reliable and conformal contact with tissue, and stability and fidelity in the signal detection. However, achieving adequate and long‐term self‐adhesion to soft and wet biological tissues has been a daunting challenge. Recently, mussel‐inspired hydrogels have emerged as promising candidates for the design of self‐adhesive bioelectronics. In addition to self‐adhesiveness, the mussel‐inspired chemistry offers a unique pathway for integrating multiple functional properties to all‐in‐one bioelectronic devices, which have great implications for healthcare applications. In this report, the recent progress in the area of mussel‐inspired self‐adhesive bioelectronics is highlighted by specifically discussing: 1) adhesion mechanism of mussels, 2) mussel‐inspired hydrogels with long‐term and repeatable adhesion, 3) the recent advance in development of hydrogel bioelectronics by reconciling self‐adhesiveness and additional properties including conductivity, toughness, transparency, self‐healing, antibacterial properties, and tolerance to extreme environment, and 4) the challenges and prospects for the future design of the mussel‐inspired self‐adhesive bioelectronics.  相似文献   

6.
7.
3D printing permits the construction of objects by layer‐by‐layer deposition of material, resulting in precise control of the dimensions and properties of complex printed structures. Although 3D printing fabricates inanimate objects, the emerging technology of 4D printing allows for animated structures that change their shape, function, or properties over time when exposed to specific external stimuli after fabrication. Among the materials used in 4D printing, hydrogels have attracted growing interest due to the availability of various smart hydrogels. The reversible shape‐morphing in 4D printed hydrogel structures is driven by a stress mismatch arising from the different swelling degrees in the parts of the structure upon application of a stimulus. This review provides the state‐of‐the‐art of 4D printing of hydrogels from the materials perspective. First, the main 3D printing technologies employed are briefly depicted, and, for each one, the required physico‐chemical properties of the precursor material. Then, the hydrogels that have been printed are described, including stimuli‐responsive hydrogels, non‐responsive hydrogels that are sensitive to solvent absorption/desorption, and multimaterial structures that are totally hydrogel‐based. Finally, the current and future applications of this technology are presented, and the requisites and avenues of improvement in terms of material properties are discussed.  相似文献   

8.
Conducting polymer nanofibers with controllable chiral mesopores in the size, the shape, and handedness have been synthesized by chiral lipid ribbon templating and “seeding” route. Chiral mesoporous conducting poly(pyrrole) (CMPP) synthesized with very small amount of chiral amphiphilic molecules (usually < 3%) has helically twisted channels with well‐defined controllable pore size of 5–20 nm in central axis of the twisted fibers. The structure and chirality of helical mesopores have been characterized by high‐resolution transmission electron microscope (HRTEM), scanning electron microscope (SEM) and electron tomography. The average pore diameters of chiral mesopores were approximately estimated from the N2 adsorption–desorption data and calculated by the conversion calculation from helical ribbons to a rectangular straight tape. The pore size of CMPP has been controlled by choosing different alkyl chain lengths of chiral lipid molecules or precisely adjusting the H2O/EtOH volume ratio.  相似文献   

9.
Mesoporous silica nanoparticles (MSN) can load and deliver potentially synergistic anticancer agents such as small molecule cytotoxics (like doxorubicin, DOX) and nucleic acids (like microRNA, miRNA). However, these cargos have different underlying chemical properties so overcoming respective intracellular delivery barriers is a key consideration. Strategies to deliver DOX from MSN frequently employ pH‐driven mechanisms that are restricted to the acidic environment of lysosomes. Conversely, strategies to deliver miRNA make use of approaches that deliberately compromise lysosomal membrane integrity to enable cytosolic delivery of the payload. To reconcile these two needs (lysosomal delivery of DOX and intracellular delivery of miRNA), a new methodology by “weaving” polyethylenimine on the MSN surface through disulfide bonds to achieve superior delivery of chemotherapy (DOX) and miRNA therapy (using miRNA‐145) is developed. Furthermore, an active targeting strategy based on a peptide ligand with affinity to glucose‐regulated protein 78 (GRP78), a cell surface protein overexpressed in colorectal carcinoma, is developed. The active targeting approach results in enhanced synergistic antitumor effect both in vitro and in vivo in an orthotopic murine model of colorectal cancer. Taken together, this work demonstrates the capability and advantages of “smart” MSN delivery systems to deliver anticancer cargo appropriately to targeted cancer cells.  相似文献   

10.
Conductive hydrogels as flexible electronic devices, not only have unique attractions but also meet the basic need of mechanical flexibility and intelligent sensing. How to endow anisotropy and a wide application temperature range for traditional homogeneous conductive hydrogels and flexible sensors is still a challenge. Herein, a directional freezing method is used to prepare anisotropic MXene conductive hydrogels that are inspired by ordered structures of muscles. Due to the anisotropy of MXene conductive hydrogels, the mechanical properties and electrical conductivity are enhanced in specific directions. The hydrogels have a wide temperature resistance range of −36 to 25 °C through solvent substitution. Thus, the muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature resistance can be used as wearable flexible sensors. The sensing signals are further displayed on the mobile phone as images through wireless technology, and images will change with the collected signals to achieve motion detection. Multiple flexible sensors are also assembled into a 3D sensor array for detecting the magnitude and spatial distribution of forces or strains. The MXene conductive hydrogels with ordered orientation and anisotropy are promising for flexible sensors, which have broad application prospects in human–machine interface compatibility and medical monitoring.  相似文献   

11.
The functionalization of a hydrogel with target molecules is one of the key steps in its various applications. Here, a versatile approach is demonstrated to functionalize a micropatterned hydrogel, which is formed by “thiol‐yne” photo‐click reaction between the yne‐ended hyperbranched poly(ether amine) (hPEA‐yne) and thiol‐containing polyhedral oligomeric silsesquioxane (PEG‐POSS‐SH). By controlling the molar ratio between hPEA‐yne and PEG‐POSS‐SH, patterned hydrogels containing thiol or yne groups are obtained. A series of thiol‐based click chemistry such as “thiol‐epoxy”, “thiol‐halogen”, “thiol‐ene”, and “thiol‐isocyanate” are used to functionalize the thiol‐containing hydrogel (Gel‐1), while the yne‐containing hydrogel (Gel‐2) is functionalized through a typical copper‐catalysed alkyne‐azide reaction (CuAAC). FTIR, UV‐vis spectra and confocal laser scanning microscopy (CLSM) are used to trace these click reactions. Due to the selective adsorption to the hydrophilic dyes, the obtained patterned hydrogel of hPEA modified with fluorescence dye is further demonstrated in application for the recognition of guest molecules.  相似文献   

12.
An efficient vapor‐activated power generator based on a 3D polypyrrole (PPy) framework was demonstrated for the first time. By constructing the anions gradient in the PPy, this specially designed PPy framework provided free ionic gradient with the assistant of absorbing water vapor to promote the spontaneous transport of ionic charge carriers, thus leading to the intermittent electric output with the change of external water vapor. A high voltage output of ≈60 mV and power density output of ≈6.9 mW m?2 were achieved under the moisture environment. More interestingly, it also exhibited power generation behaviors upon exposure to most of organic or inorganic vapors, indicating the potential new type of self‐powered vapor sensors for practical applications.  相似文献   

13.
The production of carbon nanotube (CNT) yarns possessing high strength and toughness remains a major challenge due to the intrinsically weak interactions between “bare” CNTs. To this end, nanomechanical shear experiments between functionalized bundles of CNTs are combined with multiscale simulations to reveal the mechanistic and quantitative role of nanotube surface functionalization on CNT‐CNT interactions. Notably, the in situ chemical vapor deposition (CVD) functionalization of CNT bundles by poly(methyl methacrylate) (PMMA)‐like oligomers is found to enhance the shear strength of bundle junctions by about an order of magnitude compared with “bare” van der Waals interactions between pristine CNTs. Through multiscale simulations, the enhancement of the shear strength can be attributed to an interlocking mechanism of polymer chains in the bundles, dominated by van der Waals interactions, and stretching and alignment of chains during shearing. Unlike covalent bonds, such synergistic weak interactions can re‐form upon failure, resulting in strong, yet robust fibers. This work establishes the significance of engineered weak interactions with appropriate structural distribution to design CNT yarns with high strength and toughness, similar to the design paradigm found in many biological materials.  相似文献   

14.
Designing aerogel materials featuring both high thermal insulation property and excellent mechanical robustness is of great interest for applications in superior integrated energy management systems. To meet the above requirements, composite aerogels based on hierarchical “stiff–soft” binary networks are reported, in which secondary mesoporous polymethylsilsesquioxane domains intertwined by bacterial cellulose nanofibrillar networks are connected in tandem. The resulting composite aerogels are characterized by highly porous (93.6%) and nanosized structure with a surface area of 660 m2 g?1, leading to the excellent thermal insulation performance with a low thermal conductivity of 15.3 mW m?1 K?1. The integrated “stiff–soft” binary nature also endows the composite aerogels with high flexibility that can conform to various substrates as well as large tensile strength that can withstand more than 2.70 × 104 times its own weight. These composite aerogels show multifunctionality in terms of efficient wearable protection, controllable thermal management, and ultrafast oil/water separation. These favorable multifeatures present composite aerogels ideal for aerospace, industrial, and commercial applications.  相似文献   

15.
A novel patterning technique of conductive polymers produced by vapor phase polymerization is demonstrated. The method involves exposing an oxidant film to UV light which changes the local chemical environment of the oxidant and subsequently the polymerization kinetics. This procedure is used to control the conductivity in the conjugated polymer poly(3,4‐ethylenedioxythiophene):tosylate by more than six orders of magnitude in addition to producing high‐resolution patterns and optical gradients. The mechanism behind the modulation in the polymerization kinetics by UV light irradiation as well as the properties of the resulting polymer are investigated.  相似文献   

16.
Hybrid materials displaying multistage security behavior, where a single material shows both wavelength‐ and temperature‐dependent luminescence properties, are reported. The materials consist of mixed‐lanthanide β‐diketonate complexes grafted into the pores of a nanosized 2,2′‐bipyridine‐5,5′‐dicarboxylate‐acid MOF. A very specific choice of lanthanides and their ratios, as well as β‐diketonate ligand, is crucial for obtaining the desired properties. The wavelength‐dependent luminescence properties of the materials are very well matched with the excitation wavelengths of a standard UV lamp, and a clearly visible change in luminescence is observed in a narrow temperature range (slightly below and above room temperature), proving them to be excellent materials for use in anti‐counterfeit technologies, which would be almost impossible to mimic.  相似文献   

17.
A universal platform for the efficient intracellular delivery of biomacromolecules with minimal trauma to the cells is highly desirable for biological research and clinical applications. Moreover, such a platform should include the ability to harvest the “engineered” cells, for particular in vitro or ex vivo conditions. Herein, a broadly applicable platform is presented with integrated multifunctions based on silicon nanowire arrays (SiNWAs) modified with a sugar‐responsive polymer containing phenylboronic acid (PBA) groups. Due to the synergistic effects of the specific recognition of PBA groups by sialic acid and “nanoenhancement” by the SiNWAs, this system shows a high capture capacity for both surface adherent and suspension cells overexpressing sialic acid on the membrane. Under appropriate near‐infrared irradiation, the photothermal properties of SiNWAs endow this system with high efficiency to deliver biomacromolecules into the captured cells by a membrane disruption mechanism. The cells thus “engineered” can be harvested simply by treatment with a nontoxic sugar solution, thereby maintaining good viability for subsequent applications. This method appears to have strong potential for the intracellular delivery of diverse biomacromolecules into both surface adherent and suspension cells, including hard‐to‐transfect suspension T cells, and may open up new pathways for engineering living cells.  相似文献   

18.
Self‐propelled micro‐/nanomotors are in the forefront of materials research, for applications ranging from environmental remediation to biomedicine. However, due to their limited sizes, they can only navigate within small distances, typically in the order of millimeters, which inevitably hinder their use for large‐volume real applications. Here it is shown that a 3D‐printed millimeter‐scale motor (3DP‐motor) can act as “aircraft carrier” of TiO2/Pt Janus micromotors and be used for enhanced large‐volume environmental remediation applications. The 3DP‐motor can move fast for tens of meters through the Marangoni effect by asymmetrically releasing ethanol. During its navigation, this 3DP‐motor can carry and slowly release in solution TiO2/Pt Janus micromotors which can be propelled by light illumination while acting as photodegradation agents. Highly efficient degradation of nitroaromatic explosives over a large solution area is achieved. A wall‐following motion of the 3DP‐motor without external guidance is also demonstrated which is generated by the chemiosmotic flow at the wall vicinity. This can be easily tuned by changing the wettability of the wall surface and also modifying the shape of 3DP‐motor, leading to different motion behaviors. This work introduces a new concept of micromotors carried by large millimeter sized motors to traverse long distances and it should find a broad range of applications.  相似文献   

19.
Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels possess fundamental limitations in terms of their antibacterial performance and a mechanical mismatch with human tissues, which severely limits their applications in biological interfaces. Here, inspired by animal skin, a conductive hydrogel is fabricated from a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. Remarkably, PDA@Ag NPs/CPHs exhibit broad antibacterial activity against Gram‐negative and Gram‐positive bacteria. The potential application of this versatile hydrogel is demonstrated by monitoring large‐scale movements of the human body in real time. In addition, PDA@Ag NPs/CPHs have a significant therapeutic effect on diabetic foot wounds by promoting angiogenesis, accelerating collagen deposition, inhibiting bacterial growth, and controlling wound infection. To the best of the authors' knowledge, this is the first time that conductive hydrogels with antibacterial ability are developed for use as epidermal sensors and diabetic foot wound dressing.  相似文献   

20.
Substitution of constituent atoms and/or changes of crystal structure are routinely used to tailor the fundamental properties of a semiconductor. Here, it is shown that such a tailoring can also be realized thanks to a novel hydrogen effect. Four hydrogen atoms can screen the effect the crystal potential has on a constituent cation, thus generating a solitary cation: an effectively isolated impurity, so chemically different from the unscreened constituent cations that it strongly perturbs the electronic properties of the material by increasing its fundamental band‐gap energy. Such a hydrogen‐induced screening effect is removed by thermal treatments, thus permitting reversible modifications of both the “crystal chemistry” and material's properties. This phenomenon, observed in InN and other topical nitrides, should permit the development of a new class of materials as well as the fabrication of photonic devices and optical integrated circuits with distinct, tailor‐made regions emitting or absorbing light, all integrated onto a monolithic semiconductor structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号