首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Surface‐initiated photoiniferter‐mediated photopolymerization (SI‐PMP) in presence of tetraethylthiuram disulfide is used to directly synthesize surface‐grafted poly(methacrylic acid)‐block‐poly(N‐isopropylacrylamide) (PMAA‐b‐PNIPAM) layers. The response of these PMAA‐b‐PNIPAM bi‐level brushes to changes in pH, temperature and ionic strength is investigated by using in‐situ multi‐angle ellipsometry to measure changes in solvated layer thickness. As expected for a block copolymer architecture, PMAA blocks swell as pH is increased, with the maximum change in the thickness occurring near pH = 5, and PNIPAM blocks exhibit lower critical solution temperature (LCST) behavior, marked by a broad transition between swollen and collapsed states. The response of the bi‐level brushes to changes in added salt at constant pH is complex, as the swelling behaviors of both the weak polyelectrolyte, PMAA, and thermoresponsive PNIPAM are affected by changes in ionic strength. This work demonstrates not only the robustness of SI‐PMP for making novel, bi‐level stimuli‐responsive brushes, but also the complex links between synthesis, structure, and response of these materials.  相似文献   

2.
An effective approach to develop a novel macroscopic anisotropic bilayer hydrogel actuator with on–off switchable fluorescent color‐changing function is reported. Through combining a collapsed thermoresponsive graphene oxide‐poly(N‐isopropylacrylamide) (GO‐PNIPAM) hydrogel layer with a pH‐responsive perylene bisimide‐functionalized hyperbranched polyethylenimine (PBI‐HPEI) hydrogel layer via macroscopic supramolecular assembly, a bilayer hydrogel is obtained that can be tailored and reswells to form a 3D hydrogel actuator. The actuator can undergo complex shape deformation caused by the PNIPAM outside layer, then the PBI‐HPEI hydrogel inside layer can be unfolded to trigger the on–off switch of the pH‐responsive fluorescence under the green light irradiation. This work will inspire the design and fabrication of novel biomimetic smart materials with synergistic functions.  相似文献   

3.
We present a novel method to produce bioactive surface patterns whose size can be changed in response to a variation of the environmental conditions, rather than local treatment. Our approach is based on the structured surface‐immobilization of thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) polymer chains with different transition temperatures. We experimentally demonstrate how the size of an area in which a particular polymer is collapsed or swollen can be controlled by ambient temperature. We show the temperature‐induced size‐control of a bioactive surface pattern by embedding functional motor proteins into the switchable polymer layers.  相似文献   

4.
The structure of tissue plays a critical role in its function and therefore a great deal of attention has been focused on engineering native tissue‐like constructs for tissue engineering applications. Transfer printing of cell layers is a new technology that allows controlled transfer of cell layers cultured on smart substrates with defined shape and size onto tissue‐specific defect sites. Here, the temperature‐responsive swelling‐deswelling of the hydrogels with groove patterns and their versatile and simple use as a template to harvest cell layers with anisotropic extracellular matrix assembly is reported. The hydrogels with a cell‐interactive peptide and anisotropic groove patterns are obtained via enzymatic polymerization. The results show that the cell layer with patterns can be easily transferred to new substrates by lowering the temperature. In addition, multiple cell layers are stacked on the new substrate in a hierarchical manner and the cell layer is easily transplanted onto a subcutaneous region. These results indicate that the evaluated hydrogel can be used as a novel substrate for transfer printing of artificial tissue constructs with controlled structural integrity, which may hold potential to engineer tissue that can closely mimic native tissue architecture.  相似文献   

5.
A photothermally sensitive poly(N‐isopropylacrylamide)/graphene oxide (PNIPAM/GO) nanocomposite hydrogel can be synthesized by in situ γ‐irradiation‐assisted polymerization of an aqueous solution of N‐isopropylacrylamide monomer in the presence of graphene oxide (GO). The colors and phase‐transition temperatures of the PNIPAM/GO hydrogels change with different GO doping levels. Due to the high optical absorbance of the GO, the nanocomposite hydrogel shows excellent photothermal properties, where its phase transitions can be controlled remotely by near‐infrared (NIR) laser irradiation, and it is completely reversible via laser exposure or non‐exposure. With a higher GO loading, the NIR‐induced temperature of the nanocomposite hydrogel increases more quickly than with a lower doping level and the temperature can be tuned effectively by the irradiation time. The nanocomposite hydrogel with its excellent photothermal properties will have great applications in the biomedical field, especially as microfluidic devices; this has been demonstrated in our experiments by way of remote microvalves to control fluidic flow. Such an “easy” and “clean” synthetic procedure initiated by γ‐irradiation can be extended for the efficient synthesis of other nanocomposite materials.  相似文献   

6.
This work reports a thermoresponsive multifunctional wound dressing hydrogel based on ABA triblock copolymers synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. The inner B block consists of a positively‐charged hydrolysable betaine ester loaded with an antimicrobial drug as its counter ion and the B block is flanked by two outer A blocks of thermoresponsive poly (N‐isopropylacrylamide) (PNIPAM). A solution containing the triblock copolymers can be applied to wound sites and immediately turns into a physical gel at the body temperature. This wound dressing can reduce the risk of wound infection by releasing small‐molecular‐weight antimicrobial drug and facilitate the attachment of mammalian cells during tissue regeneration through its positive surface charge. The cationic betaine ester can then hydrolyze at the wound site to its zwitterionic form, which is known to be biocompatible and nonsticky. The thermoresponsive in situ gelation feature along with controlled drug release, enhanced tissue–hydrogel interactions as well as long‐term biocompatibility make this hydrogel a very promising material for antimicrobial wound dressing applications.  相似文献   

7.
Programmable locomotion of responsive hydrogels has gained increasing attention for potential applications in soft robotics, microfluidic components, actuators, and artificial muscle. Modulation of hydrogel pore structures is essential for tailoring their mechanical strength, response speeds, and motion behaviors. Conventional methods forming hydrogels with homogeneous or stepwise‐distributed pore structures are limited by the required compromise to simultaneously optimize these aspects. Here, a heterobifunctional crosslinker enabled hydrothermal process is introduced to synthesize responsive hydrogels with well‐defined gradient pore construction. According to gradient porosity controls, the hydrogels simultaneously exhibit rapid responses to external stimuli, high elasticity/compressibility, and programmable locomotion capability. By incorporating polypyrrole nanoparticles as photothermal transducers, photo/thermal responsive composite hydrogels are formed to enable programmable control of locomotion such as bending, curving, twisting, and octopus‐like swimming under near‐infrared laser stimulation. The tunable pore structures, mechanical properties, and locomotion of this new class of materials make these gradient porous hydrogels potentially suitable for a variety of applications.  相似文献   

8.
The programmed movements of responsive functional hydrogels have received much attention because of their abundant functions and wide range of engineering applications. In this study, an innovative stomata‐inspired membrane (SIM) is fabricated by using a temperature‐responsive hydrogel through a simple, cost‐effective, and high‐throughput patterned photopolymerization. Polymerization‐induced diffusion on the macroscale surface results in formation of a double‐parted polymer membrane with fine pores after single illumination. After heating the SIM, the less deformable thick frame supports the whole structure and the highly deformable thin base regulates pore shape. Among various SIM types, the slit pores of monocot SIM, which are lined up in parallel, exhibit the largest radius deformation. The morphological configuration of the SIM can be easily controlled by changing the photomask for a given application. As the developed SIM features the sensing‐to‐activation functions of stimuli‐responsive hydrogels and can be easily fabricated, this membrane can be potentially used for numerous practical applications, such as filter membranes with adjustable pores, membrane‐based sensors, membrane‐based actuators, and multifunctional membranes.  相似文献   

9.
Carboxymethyl cellulose (CMC) chains are functionalized with self‐complementary nucleic acid tethers and electron donor or electron acceptor functionalities. The polymer chains crosslinked by the self‐complementary duplex nucleic acids and the donor–acceptor complexes as bridging units, yield a stiff stimuli‐responsive hydrogel. Upon the oxidation of the electron donor units, the donor–acceptor bridging units are separated, leading to a hydrogel of lower stiffness. By the cyclic oxidation and reduction of the donor units, the hydrogel is reversibly transformed across low and high stiffness states. The controlled stiffness properties of the hydrogel are used to develop shape‐memory hydrogels. In addition, CMC hydrogels crosslinked by donor–acceptor complexes and K+‐stabilized G‐quadruplexes reveal stimuli‐responsive properties that exhibit dually triggered stiffness functions. While the hydrogel bridged by the two crosslinking motifs reveals high stiffness, the redox‐stimulated separation of the donor–acceptor complexes or the crown‐ether‐stimulated separation of the G‐quadruplex bridges yields two alternative hydrogels exhibiting low stiffness states. The control over the stiffness properties of the dually triggered hydrogel is used to develop shape‐memory hydrogels, where the donor–acceptor units or G‐quadruplex bridges act as “memories”, and to develop triggered self‐healing process of the hydrogel.  相似文献   

10.
This article describes the design and synthesis of a new series of hydrogel membranes composed of trialkyne derivatives of glycerol ethoxylate and bisphenol A diazide (BA‐diazide) or diazide‐terminated PEG600 monomer via a Cu(I)‐catalyzed photoclick reaction. The water‐swollen hydrogel membranes display thermoresponsive actuation and their lower critical solution temperature (LCST) values are determined by differential scanning calorimetry. Glycerol ethoxylate moiety serves as the thermoresponsive component and hydrophilic part, while the azide‐based component acts as the hydrophobic comonomer and most likely provides a critical hydrophobic/hydrophilic balance contributing also to the significant mechanical strength of the membranes. These hydrogels exhibit a reversible shape‐memory effect in response to temperature through a defined phase transition. The swelling and deswelling behavior of the membranes are systematically examined. Due to the click nature of the reaction, easy availability of azide and alkyne functional‐monomers, and the polymer architecture, the glass transition temperature (Tg) is easily controlled through monomer design and crosslink density by varying the feed ratio of different monomers. The mechanical properties of the membranes are studied by universal tensile testing measurements. Moreover, the hydrogels show the ability to absorb a dye and release it in a controlled manner by applying heat below and above the LCST.  相似文献   

11.
A thermoresponsive hydrogel, poly(N‐isopropylacrylamide) (poly(NIPAM)), is synthesized in situ within an oxidized porous Si template, and the nanocomposite material is characterized. Infiltration of the hydrogel into the interconnecting nanoscale pores of the porous SiO2 host is confirmed by scanning electron microscopy. The optical reflectivity spectrum of the nanocomposite hybrid displays Fabry–Pérot fringes characteristic of thin film interference, enabling direct, real‐time observation of the volume phase transition of the confined poly(NIPAM) hydrogel. Reversible optical reflectivity changes are observed to correlate with the temperature‐dependent volume phase transition of the hydrogel, providing a new means of studying nanoscale confinement of responsive hydrogels. The confined hydrogel displays a swelling and shrinking response to changes in temperature that is significantly faster than that of the bulk hydrogel. The porosity and pore size of the SiO2 template, which are precisely controlled by the electrochemical synthesis parameters, strongly influence the extent and rate of changes in the reflectivity spectrum of the nanocomposite. The observed optical response is ascribed to changes in both the mechanical and the dielectric properties of the nanocomposite.  相似文献   

12.
In this study, we report on a novel composite membrane system for pH‐responsive controlled release, which is composed of a porous membrane with linear grafted, positively pH‐responsive polymeric gates acting as functional valves, and a crosslinked, negatively pH‐responsive hydrogel inside the reservoir working as a functional pumping element. The proposed system features a large responsive release rate that goes effectively beyond the limit of concentration‐driven diffusion due to the pumping effects of the negatively pH‐responsive hydrogel inside the reservoir. The pH‐responsive gating membranes were prepared by grafting poly(methacrylic acid) (PMAA) linear chains onto porous polyvinylidene fluoride (PVDF) membrane substrates using a plasma‐graft pore‐filling polymerization, and the crosslinked poly(N,N‐dimethylaminoethyl methacrylate) (PDM) hydrogels were synthesized by free radical polymerization. The volume phase‐transition characteristics of PMAA and PDM were opposite. The proposed system opens new doors for pH‐responsive “smart” or “intelligent” controlled‐release systems, which are highly attractive for drug‐delivery systems, chemical carriers, sensors, and so on.  相似文献   

13.
Gold nanoparticles have been incorporated with high efficiency into thermoresponsive hydrogel spheres, due to the suitable relationship of the nanoparticles and pore sizes given by the gel network. The hydrogel loaded with nanoparticles remains thermoresponsive, and the loaded gold nanoparticles exhibit little aggregation as detected by plasmon resonance, and are reversibly sensitive to the refractive index and temperature of the surrounding media. The layer‐by‐layer growth of polyelectrolyte multilayers on the composite spheres has also been demonstrated. These thermoresponsive plasmonic microspheres are appealing for application in biological assays.  相似文献   

14.
Stimuli‐responsive hydrogels with decent electrical properties are a promising class of polymeric materials for a range of technological applications, such as electrical, electrochemical, and biomedical devices. In this paper, thermally responsive and conductive hybrid hydrogels are synthesized by in situ formation of continuous network of conductive polymer hydrogels crosslinked by phytic acid in poly(N‐isopropylacrylamide) matrix. The interpenetrating binary network structure provides the hybrid hydrogels with continuous transporting path for electrons, highly porous microstructure, strong interactions between two hydrogel networks, thus endowing the hybrid hydrogels with a unique combination of high electrical conductivity (up to 0.8 S m?1), high thermoresponsive sensitivity (significant volume change within several seconds), and greatly enhanced mechanical properties. This work demonstrates that the architecture of the filling phase in the hydrogel matrix and design of hybrid hydrogel structure play an important role in determining the performance of the resulting hybrid material. The attractive performance of these hybrid hydrogels is further demonstrated by the developed switcher device which suggests potential applications in stimuli‐responsive electronic devices.  相似文献   

15.
Hydrogel actuators, capable of generating reversible deformation in response to external stimulus, are widely considered as new emerging intelligent materials for applications in soft robots, smart sensors, artificial muscles, and so on. Peptide self-assembly is widely applied in the construction of intelligent hydrogel materials due to their excellent stimulus response. However, hydrogel actuators based on peptide self-assembly are rarely reported and explored. In this study, a pH-responsive peptide (MA-FIID) is designed and introduced into a poly(N-isopropyl acrylamide) backbone (PNIPAM) to construct bilayer and heterogeneous hydrogel actuators based on the assembly and disassembly of peptide molecules under different pH conditions. These peptide-containing hydrogel actuators can perform controllable bending, bucking, and complex deformation under pH stimulation. Meanwhile, the Hofmeister effect of PNIPAM hydrogels endows these peptide-containing hydrogels with enhanced mechanical strength, ionic stimulus response (CaCl2), and excellent shape-memory property. This work broadens the application of supramolecular self-assembly in the construction of intelligent hydrogels, and also provides new inspirations for peptide self-assembly to construct smart materials.  相似文献   

16.
Combinations of hydrogels and solids provide high level functionality for devices such as tissue engineering scaffolds and soft machines. However, the weak bonding between hydrogels and solids hampers functionality. Here, a versatile strategy to develop mechanically robust solid?hydrogel hybrid materials using surface embedded radicals generated through plasma immersion ion implantation (PIII) of polymeric surfaces is reported. Evidence is provided that the reactive radicals play a dual role: inducing surface‐initiated, spontaneous polymerization of hydrogels; and binding the hydrogels to the surfaces. Acrylamide and silk hydrogels are formed and covalently attached through spontaneous reactions with the radicals on PIII activated polymer surfaces without cross‐linking agents or initiators. The hydrogel amount increases with incubation time, monomer concentration, and temperature. Stability tests indicate that 95% of the hydrogel is retained even after 4 months in PBS solution. T‐peel tests show that failure occurs at the tape?hydrogel interface and the hydrogel‐PIII‐treated PTFE interfacial adhesion strength is over 300 N m?1. Cell assays show no adhesion to the as‐synthesized hydrogels; however, hydrogels synthesized with fibronectin enable cell adhesion and spreading. These results show that polymers functionalized with surface‐embedded radicals provide excellent solid platforms for the generation of robust solid?hydrogel hybrid structures for biomedical applications.  相似文献   

17.
In situ hydrogels have attracted considerable attention in tissue engineering because of their minimal invasiveness and ability to match the irregular tissue defects. However, hydrous physiological environments and the high level of moisture in hydrogels severely hamper binding to the target tissue and easily cause wound infection, thereby limiting the effectiveness in wound care management. Thus, forming an intimate assembly of the hydrogel to the tissue and preventing wound infecting still remains a significant challenge. In this study, inspired by mussel adhesive protein, a biomimetic dopamine‐modified ε‐poly‐l ‐lysine‐polyethylene glycol‐based hydrogel (PPD hydrogel) wound dressing is developed in situ using horseradish peroxidase cross‐linking. The biomimetic catechol–Lys residue distribution in PPD polymer provides a catechol–Lys cooperation effect, which endows the PPD hydrogels with superior wet tissue adhesion properties. It is demonstrated that the PPD hydrogel can facilely and intimately integrate with biological tissue and exhibits superior capacity of in vivo hemostatic and accelerated wound repair. In addition, the hydrogels exhibit outstanding anti‐infection property because of the inherent antibacterial ability of ε‐poly‐l ‐lysine. These findings shed new light on the development of mussel‐inspired tissue‐anchored and antibacterial hydrogel materials serving as wound dressings.  相似文献   

18.
A new class of materials that are capable of color tunability over 300 nm with a 15 °C temperature change is introduced. The materials are assembled from thermoresponsive poly (N‐isopropylacrylamide)‐co‐acrylic acid (pNIPAm‐co‐AAc) microgels, which are deposited on Au coated glass substrates. The films are also pH responsive; the temperature‐induced color change was suppressed at high pH and is consistent with the behavior of a solution of suspended microgels. The mechanism proposed to account for the observed optical properties suggests that they result from the two Au layers being separated from each other by the “monolithic” microgel film, much like a Fabry‐Pérot etalon or interferometer. It is the modulation of the distance between these two layers, facilitated by the microgel collapse transition at high temperature, that allows the color to be tuned. The sensitivity of the system presented here will be used for future sensing and biosensing applications, as well as for light filtering applications.  相似文献   

19.
Developing physical double‐network (DN) removable hydrogel adhesives with both high healing efficiency and photothermal antibacterial activities to cope with multidrug‐resistant bacterial infection, wound closure, and wound healing remains an ongoing challenge. An injectable physical DN self‐healing hydrogel adhesive under physiological conditions is designed to treat multidrug‐resistant bacteria infection and full‐thickness skin incision/defect repair. The hydrogel adhesive consists of catechol–Fe3+ coordination cross‐linked poly(glycerol sebacate)‐co‐poly(ethylene glycol)‐g‐catechol and quadruple hydrogen bonding cross‐linked ureido‐pyrimidinone modified gelatin. It possesses excellent anti‐oxidation, NIR/pH responsiveness, and shape adaptation. Additionally, the hydrogel presents rapid self‐healing, good tissue adhesion, degradability, photothermal antibacterial activity, and NIR irradiation and/or acidic solution washing‐assisted removability. In vivo experiments prove that the hydrogels have good hemostasis of skin trauma and high killing ratio for methicillin‐resistant staphylococcus aureus (MRSA) and achieve better wound closure and healing of skin incision than medical glue and surgical suture. In particular, they can significantly promote full‐thickness skin defect wound healing by regulating inflammation, accelerating collagen deposition, promoting granulation tissue formation, and vascularization. These on‐demand dissolvable and antioxidant physical double‐network hydrogel adhesives are excellent multifunctional dressings for treating in vivo MRSA infection, wound closure, and wound healing.  相似文献   

20.
Hybrid plasmonic nanostructures comprising gold nanoparticle (AuNP) arrays separated from Au substrate through a temperature‐sensitive poly(N‐isopropylacrylamide) (PNIPAM) linker layer are constructed, and unique plasmonic‐coupling‐based surface plasmon resonance (SPR) sensing properties are investigated. The optical properties of the model system are investigated by in situ and scan‐mode SPR analysis. The swelling‐shrinking transitions in the polymer linker brush are studied by in situ contact‐mode atomic force microscopy at two different temperatures in water. It is revealed that the thickness of the PNIPAM layer is decreased from 30 to 14 nm by increasing the temperature from 20 to 32 °C. For the first time the dependence of the coupling behavior in AuNPs is investigated with controlled density on the temperature in a quantitative manner in terms of the change in SPR signals. The device containing AuNPs with optimized AuNP density shows 3.2‐times enhanced sensitivity compared with the control Au film‐PNIPAM sample. The refractive index sensing performance of the Au film‐PNIPAM‐AuNPs is greater than that of Au film‐PNIPAM by 19% when the PNIPAM chains have a collapsed conformation above lower critical solution temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号