首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
基于确定学习的机器人任务空间自适应神经网络控制   总被引:3,自引:0,他引:3  
吴玉香  王聪 《自动化学报》2013,39(6):806-815
针对产生回归轨迹的连续非线性动态系统, 确定学习可实现未知闭环系统动态的局部准确逼近. 基于确定学习理论, 本文使用径向基函数(Radial basis function, RBF)神经网络为机器人任务空间跟踪控制设计了一种新的自适应神经网络控制算法, 不仅实现了闭环系统所有信号的最终一致有界, 而且在稳定的控制过程中, 沿着回归跟踪轨迹实现了部分神经网络权值收敛到最优值以及未知闭环系统动态的局部准确逼近. 学过的知识以时不变且空间分布的方式表达、以常值神经网络权值的方式存储, 可以用来改进系统的控制性能, 也可以应用到后续相同或相似的控制任务中, 节约时间和能量. 最后, 用仿真说明了所设计控制算法的正确性和有效性.  相似文献   

2.
一种基于增强学习的自适应控制方法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对模型未知时变非线性对象的控制问题,提出一种直接的自适应控制策略。该策略基于径向基神经网络并结合增强学习的自调节能力,无需知道控制对象的动态特性,而是通过在线试错在控制过程中不断积累与问题相关的信息,用以产生可接受的逐步优化的解。  相似文献   

3.
利用确定学习, 提出了移动机器人的学习控制策略. 在闭环控制过程中, 该控制器可以学习到未知控制系统的动态, 并将学到的动态作为经验知识以常值网络权值的形式储存. 在下次重复相同的控制任务时, 控制器可以调用以往所学到的动态知识用于控制并获得更好的控制性能. 该策略避免了耗时的神经网络重新训练过程, 使得移动机器人具有真正意义上的从经历中获取知识, 存储知识, 并将学到的知识再利用的智能控制能力.  相似文献   

4.
针对包含不确定动力学因素的轮式移动机器人的编队控制问题,运用虚拟领队的概念,提出一种基于径向基神经网络的自适应编队控制方法.首先通过虚拟领队的引入,将高维编队控制问题转化为单个移动机器人的跟随问题;然后,利用权值自适应变化的径向基神经网络在线估计跟随机器人不确定部分的上界值,大大简化了控制器的设计过程;最后,应用Lyapunov稳定性理论和Barbalat定理证明了闭环系统的稳定性.仿真结果表明了所提出控制策略的有效性.  相似文献   

5.
针对具有未知动态的电驱动机器人,研究其自适应神经网络控制与学习问题.首先,设计了稳定的自适应神经网络控制器,径向基函数(RBF)神经网络被用来逼近电驱动机器人的未知闭环系统动态,并根据李雅普诺夫稳定性理论推导了神经网络权值更新律.在对回归轨迹实现跟踪控制的过程中,闭环系统内部信号的部分持续激励(PE)条件得到满足.随着PE条件的满足,设计的自适应神经网络控制器被证明在稳定的跟踪控制过程中实现了电驱动机器人未知闭环系统动态的准确逼近.接着,使用学过的知识设计了新颖的学习控制器,实现了闭环系统稳定、改进了控制性能.最后,通过数字仿真验证了所提控制方法的正确性和有效性.  相似文献   

6.
王敏  林梓欣  王聪  杨辰光 《自动化学报》2023,49(9):1904-1914
针对未开放力矩控制接口的一类封闭机器人系统, 提出一种基于外环速度补偿的确定学习控制方案. 该控制方案考虑机器人受到未知动力学影响, 且具有未知内环比例积分(Proportional-integral, PI)速度控制器. 首先, 利用宽度径向基函数(Radial basis function, RBF)神经网络对封闭机器人的内部未知动态进行逼近, 设计外环自适应神经网络速度控制指令. 在实现封闭机器人稳定控制的基础上, 结合确定学习理论证明了宽度RBF神经网络的学习能力, 提出基于确定学习的高精度速度控制指令. 该控制方案能够保证被控封闭机器人系统的所有信号最终一致有界且跟踪误差收敛于零的小邻域内. 在所提控制方案中, 通过引入外环补偿控制思想和宽度神经网络动态增量节点方式, 减小了设备计算负荷, 提高了速度控制下机器人的运动性能, 解决了市场上封闭机器人系统难以设计力矩控制的难题, 实现了不同工作任务下的高精度控制. 最后数值系统仿真结果和UR5机器人实验结果验证了该方案的有效性.  相似文献   

7.
王鼎 《自动化学报》2019,45(6):1031-1043
在作为人工智能核心技术的机器学习领域,强化学习是一类强调机器在与环境的交互过程中进行学习的方法,其重要分支之一的自适应评判技术与动态规划及最优化设计密切相关.为了有效地求解复杂动态系统的优化控制问题,结合自适应评判,动态规划和人工神经网络产生的自适应动态规划方法已经得到广泛关注,特别在考虑不确定因素和外部扰动时的鲁棒自适应评判控制方面取得了很大进展,并被认为是构建智能学习系统和实现真正类脑智能的必要途径.本文对基于智能学习的鲁棒自适应评判控制理论与主要方法进行梳理,包括自学习鲁棒镇定,自适应轨迹跟踪,事件驱动鲁棒控制,以及自适应H控制设计等,并涵盖关于自适应评判系统稳定性、收敛性、最优性以及鲁棒性的分析.同时,结合人工智能、大数据、深度学习和知识自动化等新技术,也对鲁棒自适应评判控制的发展前景进行探讨.  相似文献   

8.
提出一种针对机器人跟踪控制的神经网络自适应滑模控制策略。该控制方案将神经网络的非线性映射能力与滑模变结构和自适应控制相结合。对于机器人中不确定项,通过RBF网络分别进行自适应补偿,并通过滑模变结构控制器和自适应控制器消除逼近误差。同时基于Lyapunov理论保证机器手轨迹跟踪误差渐进收敛于零。仿真结果表明了该方法的优越性和有效性。  相似文献   

9.
针对一类不确定时滞非线性系统,提出一种自适应跟踪控制器.首先采用Lyapunov-Krasovskii函数设计时滞补偿器,并构造其中的参数调节规律.再针对建模误筹及小确定非线性,引入动态结构自适应神经网络,其隐层神经元个数可以随着跟踪误差的增大而在线增加,以提高逼近精度.最后,用仿真示例表明本文所提方法是有效的.  相似文献   

10.
为了提高强化学习的控制性能,提出一种基于分数梯度下降RBF神经网络的强化学习算法.通过评价神经网络和执行神经网络组成强化学习系统,利用神经网络记忆和联想,学会控制倒立摆,提高控制精度,使误差趋于零,直至学习成功,并证明闭环系统的稳定性.通过倒立摆的物理实验发现,当分数阶阶数较大,微分的作用更显著,对角速度和速度的控制效果更好,角速度和速度的均方误差和平均绝对误差较小;当分数阶阶数较小,积分的作用更显著,对倾斜角和位移的控制效果更好,因此倾斜角和位移的均方误差和平均绝对误差较小.仿真实验的结果表明,所提算法动态响应好,超调量小,调整时间短,精度高,泛化性能好.它优于基于RBF神经网络的强化学习算法和传统强化学习算法,能有效地加快梯度下降法的收敛速度,提高其控制性能.在引入适当的干扰后,所提算法能够快速地自我调节并恢复稳定状态,控制器的鲁棒性和动态性能满足实际要求.  相似文献   

11.
In this paper, a feedforward neural network with sigmoid hidden units is used to design a neural network based iterative learning controller for nonlinear systems with state dependent input gains. No prior offline training phase is necessary, and only a single neural network is employed. All the weights of the neurons are tuned during the iteration process in order to achieve the desired learning performance. The adaptive laws for the weights of neurons and the analysis of learning performance are determined via Lyapunov‐like analysis. A projection learning algorithm is used to prevent drifting of weights. It is shown that the tracking error vector will asymptotically converges to zero as the iteration goes to infinity, and the all adjustable parameters as well as internal signals remain bounded.  相似文献   

12.

Traditional proportional-integral-derivative (PID) controllers have achieved widespread success in industrial applications. However, the nonlinearity and uncertainty of practical systems cannot be ignored, even though most of the existing research on PID controllers is focused on linear systems. Therefore, developing a PID controller with learning ability is of great significance for complex nonlinear systems. This article proposes a deterministic learning-based advanced PID controller for robot manipulator systems with uncertainties. The introduction of neural networks (NNs) overcomes the upper limit of the traditional PID feedback mechanism’s capability. The proposed control scheme not only guarantees system stability and tracking error convergence but also provides a simple way to choose the three parameters of PID by setting the proportional coefficients. Under the partial persistent excitation (PE) condition, the closed-loop system unknown dynamics of robot manipulator systems are accurately approximated by NNs. Based on the acquired knowledge from the stable control process, a learning PID controller is developed to further improve overall control performance, while overcoming the problem of repeated online weight updates. Simulation studies and physical experiments demonstrate the validity and practicality of the proposed strategy discussed in this article.

  相似文献   

13.
本文解决参数未知、干扰有界的线性离散时间系统的参数估计和适应镇定问题,设计控制器时事先只要求系统的阶巳知,系统能控、能观测,设计时所用的外部激励不用随机信号而用确定性信号。  相似文献   

14.
本文提出了一种基于多个快速平行处理器--Transputer而实现的电力系统自适应稳定控制器.文中介绍了这种自适应稳定器实现的硬件、软件系统及实验室动态模拟试验结果.  相似文献   

15.
This paper presents a machine-learning-based speedup strategy for real-time implementation of model-predictive-control(MPC) in emergency voltage stabilization of power systems.Despite success in various applications,real-time implementation of MPC in power systems has not been successful due to the online control computation time required for large-sized complex systems,and in power systems,the computation time exceeds the available decision time used in practice by a large extent.This long-stan...  相似文献   

16.
17.
不确定非线性系统的模糊鲁棒跟踪控制   总被引:7,自引:0,他引:7  
刘亚  胡寿松 《自动化学报》2004,30(6):949-953
提出了一种基于T-S模糊型的鲁捧自适应跟踪控制方法.整个控制方案在结合所有的局部线性状态反馈控制器的基础上,引入了基于自适应神经网络的鲁棒控制器.所提出的模糊自适应鲁棒控制器设计方法不需要求取李亚普诺夫方程的公共解,不要求系统的不确定性项满足任何匹配条件或约束条件所提出的带有补偿项的完全自适应RBF神经网络,通过在线自适应调整RBF神经网络的权重、函数中心和宽度,提高了神经网络的学习能力,可以有效地对消系统的未知不确定性的影响.同时通过自适应补偿项来在线估计神经网络的近似误差边界,弥补了神经网络的不足.所提出的方案保证了闭环系统的稳定性,有效地提高了系统的鲁棒性和跟踪性能.仿真实例表明了所提出方法的有效性.  相似文献   

18.
Here, a novel adaptive neural sliding mode controller (ANSMC) is proposed to handle the coupling and dynamic uncertainty of MIMO systems. The structure of this model-free new controller is based on a radial basis function neural network (RBFNN) which is derived from Lyapunov stability theory and relaxing Kalman–Yacubovich lemma to monitor the system for tracking a user-defined reference model. The weights of RBFNN can be initialized at zero, then, a novel online tuning algorithm is developed based on Lyapunov stability theory. A boundary layer function is introduced into the updating law to cover the parameter errors and modeling errors, and to guarantee the state errors converge into a specified error bound. An e-modification is added into the updating law to release the assumption of persistent excitation and obtain the appropriate values of the connecting weights of a RBFNN. To evaluate the control performance of the proposed controller, a two-link robot system is chosen as the simulation case. The numerical simulations results show that this novel controller has very good tracking accuracy, stability and robustness.  相似文献   

19.
Conventional robot control schemes are basically model-based methods. However, exact modeling of robot dynamics poses considerable problems and faces various uncertainties in task execution. This paper proposes a reinforcement learning control approach for overcoming such drawbacks. An artificial neural network (ANN) serves as the learning structure, and an applied stochastic real-valued (SRV) unit as the learning method. Initially, force tracking control of a two-link robot arm is simulated to verify the control design. The simulation results confirm that even without information related to the robot dynamic model and environment states, operation rules for simultaneous controlling force and velocity are achievable by repetitive exploration. Hitherto, however, an acceptable performance has demanded many learning iterations and the learning speed proved too slow for practical applications. The approach herein, therefore, improves the tracking performance by combining a conventional controller with a reinforcement learning strategy. Experimental results demonstrate improved trajectory tracking performance of a two-link direct-drive robot manipulator using the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号