共查询到20条相似文献,搜索用时 24 毫秒
1.
针对采用串联网侧变换器的双馈感应发电机(doubly fed induction generators, DFIG)风电系统,详细分析电网电压不平衡条件下该系统的运行情况,从抑制不平衡定子电压及维持系统有功功率平衡的角度出发,分别提出电网不平衡时串联网侧变换器和并联网侧变换器的控制策略.与电网不平衡下DFIG系统的传统运行控制方案相比,所提系统协调控制策略无需改变电网不平衡下转子侧变换器的控制策略,简化转子侧变换器的控制并有效提高其运行可靠性;所提方案在实现DFIG系统电磁转矩、直流链电压及系统总输出有功功率无二倍频波动的同时,实现电网不平衡下DFIG定、转子三相电流平衡,进一步提高了DFIG系统运行的稳定性和可靠性.通过对电网不平衡下采用串联网侧变换器的DFIG风电系统和采用传统控制策略的DFIG系统进行了仿真计算和对比分析,验证所提协调控制策略的正确性和有效性. 相似文献
2.
This paper investigates an improved control and operation of a doubly-fed induction generator (DFIG) system under unbalanced network conditions. A new rotor current control scheme is presented, which consists of a main controller and an auxiliary compensator. The main controller is constructed in the same way as the conventional vector control design without involving sequential-component decomposition in order to guarantee system stability and high transient response. While the auxiliary controller is specially designed to control the negative sequence current taking into account the impact of the main controller on negative sequence components. Simulated results on a commercial 1.5-MW DFIG system and experimental tests on a 1.5-kW DFIG prototype are provided and compared with those of conventional vector control and dual PI current control schemes to demonstrate the effectiveness of the proposed control strategy during steady-state and transient conditions when the network voltage is unbalanced. 相似文献
3.
The aim of this paper is to propose a control method for a doubly-fed induction generator used in wind energy conversion systems. First, stator active and reactive powers are regulated by controlling the machine inverter with three different controllers: proportional–integral, polynomial RST based on pole placement theory and Linear Quadratic Gaussian. The machine is tested in association with a wind-turbine emulator. Secondly a control strategy for the grid-converter is proposed. Simulations results are presented and discussed for each converter control and for the whole system. 相似文献
4.
为进一步提高电网电压不平衡下采用串联网侧变换器的双馈感应发电机(doubly fed induction generator,DFIG)风电系统的运行性能,研究了适用于该系统的改进运行控制策略。提出电网电压不平衡下采用串联网侧变换器的DFIG系统的3种可选运行方案,以此为基础提出串联网侧变换器与并联网侧变换器的协调控制策略,并建立了在双同步dq旋转坐标轴系下两者的控制模型。所提系统协调控制方案无需改变电网电压不平衡下转子侧变换器的控制策略,在实现发电机输出功率无二倍频波动、电磁转矩无二倍频波动以及定、转子三相电流平衡的同时,可实现电网电压不平衡下整个系统或总输出有功功率无二倍频波动(同时可实现直流链电压无二倍频波动)或总输出无功功率无二倍频波动或整个系统无负序电流注入电网的不同运行功能,进一步增强了不平衡电压下DFIG风电系统的运行能力。对一台采用串联网侧变换器的DFIG风电模拟系统在不平衡电压条件下的运行进行了相关实验,实验结果验证了该文所提改进控制策略的可行性。 相似文献
5.
对直驱型永磁风电机组并网控制系统工作结构与原理进行讨论,并研究变流器电机侧与电网侧的并网控制电路与控制策略。应用并联多变流器的方法,采取电网电压定向的电流、电压双闭环矢量控制模式,设计逆变并网控制。基于对交-直-交背靠背双PWM变流器的控制,运行软件仿真了690 V/2.5 MW直驱型永磁风电机组的变流器并网过程。实验结果表明,控制电路与策略正确有效,并网变流器能进行双向的能量传递,并且具有良好的静动态特性。 相似文献
6.
为提高电网谐波条件下双馈感应发电机DFIG(doubly-fed induction generator)的安全稳定运行性能及系统并网电能质量,利用基于串联网侧变换器的双馈风电系统具有定子机端电压灵活可控的特性,在对含有5、7次谐波电网电压条件下该系统运行行为分析的基础上提出了电网谐波条件下适用于该系统的改进控制策略;在实现发电机电流无畸变,且其输出功率、电磁转矩无波动的同时,亦可实现系统输出功率无6倍频波动或输出电流无畸变2种可选的运行功能;最后,对1台2 MW基于串联网侧变换器的DFIG系统在电网谐波条件下的仿真分析,验证了所提改进控制策略的有效性。 相似文献
7.
电网电压不平衡会导致双馈感应发电机组(DFIG)定、转子电流出现较大不平衡,使发电机功率和电磁转矩发生振荡,从而恶化机组运行状况.分析了串联网侧变换器抑制不平衡电网电压对DFIG系统影响的机理,利用并联网侧变换器的控制及静止坐标系下的比例谐振控制器,提出了基于串联网侧变换器的DFIG在不平衡电网电压条件下的控制策略;在实现DFIG电磁转矩、直流母线电压及系统总输出有功功率无2倍频波动的同时,使DFIG定、转子三相电流平衡.所述方法具有不改变转子侧变换器的控制策略、无需求解复杂高阶矩阵的特点.对一台基于串联网侧变换器的2 MW DFIG系统进行了仿真,验证了所提出控制策略的正确性和有效性. 相似文献
8.
本文结合矩阵变换器、双馈感应电机(DFIG)风力发电系统的优点,导出了双馈电机风力发电系统在同步旋转dq坐标轴下的矢量控制数学模型;针对常规矢量控制中存在电流耦合情况,设计一种新型、简易的电流前馈解耦控制方案.在此基础上,建立基于矩阵变换器交流励磁磁场定向电流解耦矢量控制策略.MATLAB仿真结果表明,当有功、无功功率变化时,电流解耦控制具有良好动态性能.本文设计了11kW风力发电试验装置并进行离、并网实验,当双馈电机处于亚同步、超同步状态时,双馈电机定子电压和频率均能保持稳定,实现变速恒频运行.实验结果表明,基于矩阵变换器交流励磁双馈风力发电系统是可行的,并具有一定的实用价值. 相似文献
9.
This article develops a model of a doubly fed induction generator system including the detailed dynamics of the converter circuitry. The order of the converter controls in terms of providing damping to the system is identified through residue principles. Supplementary damping controller has been incorporated so as to compensate for the phase lag introduced by the rotor voltage input, which was observed to have the largest residue contribution at the lightly damped mode. The improvement in damping profile was verified by simulating the system for a number of disturbance conditions. While the power oscillation damping (POD) controller was observed to enhance the system damping generally, it was also able to ride through low voltage conditions arising out of severe fault conditions thus averting total system collapse. 相似文献
10.
This paper presents an enhanced control strategy for Wind Energy Conversion System (WECS) using Doubly-FedInduction Generator (DFIG). A robust Super-Twisting (STW) sliding mode control for variable speed wind turbine isdeveloped to produce the optimal aerodynamic torque and improve the dynamic performance of the WECS. Theelectromagnetic torque of the DFIG is directly tracked using the proposed control to achieve maximum powerextraction. The performance and the effectiveness of the STW control strategy are compared to conventionalSliding Mode (SM) and Proportional-Integral (PI) controllers. The proposed STW algorithm shows interesting featuresin terms of chattering reduction, finite convergence time and robustness against parameters variations and systemdisturbances. 相似文献
11.
This paper presents a control scheme of a variable-speed wind turbine with a permanent-magnetic synchronous generator (PMSG) and full-scale back-to-back voltage source converter. A comprehensive dynamical model of the PMSG wind turbine and its control scheme is presented. The control scheme comprises both the wind-turbine control itself and the power-converter control. In addition, since the PMSG wind turbine is able to support actively the grid due to its capability to control independently active and reactive power production to the imposed set-values with taking into account its operating state and limits, this paper presents the supervisory reactive power control scheme in order to regulate/contribute the voltage at a remote location. The ability of the control scheme is assessed and discussed by means of simulations, based on a candidate site of the offshore wind farm in Jeju, Korea. 相似文献
12.
Speed control of grid-connected switched reluctance generator driven by variable speed wind turbine using adaptive neural network controller 总被引:1,自引:0,他引:1
In wind energy conversion system, variable speed operation is becoming popular nowadays, where conventional synchronous generators, permanent magnet synchronous generators, and doubly fed induction generators are commercially used as wind generators. Along with the existing and classical solutions of the aforementioned machines used in wind power applications, the switched reluctance generator (SRG) can also be considered as a wind generator due to its inherent characteristics such as simple construction, robustness, low manufacturing cost, etc. This paper presents a novel speed control of switched reluctance generator by using adaptive neural network (ANN) controller. The SRG is driven by variable speed wind turbine and it is connected to the grid through an asymmetric half bridge converter, DC-link, and DC-AC inverter system. Speed control is very important for variable speed operation of SRG to ensure maximum power delivery to the grid for any particular wind speed. Detailed modeling and control strategies of SRG as well as other individual components including wind turbine, converter, and inverter systems are presented. The effectiveness of the proposed system is verified with simulation results using the real wind speed data measured at Hokkaido Island, Japan. The dynamic simulation study is carried out using PSCAD/EMTDC. 相似文献
13.
The performance of doubly fed induction generator (DFIG) variable speed wind turbine under network fault is studied using simulator developed in MATLAB/SIMULINK. Simulation results show the transient behavior of the doubly fed induction generator when a sudden short circuit at the generator bus is introduced. After the clearance of the short-circuit fault the control schemes manage to restore the wind turbine's normal operation. The controller performance is demonstrated by simulation results both during the fault and after the clearance of the fault. A crowbar is used to protect the rotor converter against short-circuit current during faults. 相似文献
14.
利用电压空间矢量滞环电流控制(VSM-HCC)和变速PI电压控制,实现了变速恒频(VSCF)双馈风力发电机组网侧变换器功率双向流动和直流侧电压稳定的控制目的。电压空间矢量调制方法的引入,降低了变换器的开关频率,同时也保留了滞环控制响应快、简单及鲁棒性好等优点。通过增加负载电流前馈补偿环节,提高了系统的响应速度,有效抑制了直流侧电压的波动。仿真验证了该控制策略比传统的双闭环PI控制对外部扰动有更好的自适应能力和良好的动态性能,并示出与VSCF双馈风力发电机组进行联调仿真的结果。 相似文献
15.
针对并网点电压不平衡且同时含有5次、7次谐波电压的电网条件,文中利用串联网侧变换器和并联网侧变换器的协调控制以及正向同步旋转轴系下的比例积分—双频谐振(PI-DFR)控制器,提出了基于串联网侧变换器的双馈风电系统在不平衡且谐波畸变电网电压下的改进控制策略;在实现了定转子电流平衡无畸变、发电机输出功率和电磁转矩无波动的同时,亦消除了系统输出有功功率的2倍和6倍频波动。此外,还提出了考虑并联网侧变换器电流容量时参考电流指令在其电流最大值下的分配原则及分配后的参考电流指令。对一台2MW基于串联网侧变换器的双馈风电系统在不平衡且谐波畸变电网电压下的仿真分析,验证了所提控制策略及并联网侧变换器参考电流指令分配原则的正确性。 相似文献
16.
Wind turbine driven induction generators are vulnerable to transient disturbances like wind gusts and low voltages on the system. The fixed capacitor at the generator terminal or the limited support from the grid may not be able to provide the requisite reactive power under these abnormal conditions. This paper presents a susceptance control strategy for a variable speed wound-rotor induction generator which can cater for the reactive power requirement. The susceptance is adjusted through a robust feedback controller included in the terminal voltage driven automatic excitation control circuit. The fixed parameter robust controller design is carried out in frequency domain using multiplicative uncertainty modeling and H∞ norms. The robustness of the controller has been evaluated through optimally tuned PID controllers. Simulation results show that the robust controller can effectively restore normal operation following emergencies like sudden load changes, wind gusts and low voltage conditions. The proposed robust controller has been shown to have adequate fault ride through capabilities in order to be able to meet connection requirements defined by transmission system operators. 相似文献
17.
This paper presents the issue of the Sub-synchronous resonance (SSR) phenomenon in a series compensated DFIGbased wind power plant and its alleviation using a Battery Energy Storage-based Damping Controller (BESSDCL). A supplementary damping signal is developed considering the angular speed deviation and is incorporated into the BESS control system. Wide-area Measurement System data is used to determine the angular speed deviation. A linearized system model is developed to perform eigenvalue analysis, and to detect and examine unstable SSR modes. The variation of wind speed and three-phase fault are also taken into consideration to validate the robustness of the controller. To further verify the efcacy of the proposed damping controller, time-domain simulations are performed using MATLAB/Simulink. The application of the proposed BESSDCL stabilizes all the unstable system modes efectively at wind speeds of 7 m/s, 9 m/s, and 11 m/s, and at 40%, 50%, and 60% series compensation levels, as well three-phase fault conditions. 相似文献
18.
Application of neural network controller for maximum power extraction of a grid-connected wind turbine system 总被引:2,自引:0,他引:2
This paper presents a neural network (NN) pitch controller of a grid-connected wind turbine system for extracting maximum power from wind and proves that its performance using the NN controller would be better than that using a classical PI controller. It discusses the maximum power control algorithm for the wind turbine and presents, in a graphical form, the relationship of wind turbine output, rotor speed, power coefficient, and tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control algorithm. The paper describes the modeling and simulation of the horizontal axis wind turbine system, which includes the drive train model, induction generator model, and grid-interface model for dynamics analysis. The control objective is to extract maximum power from wind and transfer the power to the grid. This is achieved by controlling the pitch angle of the wind turbine blades by the NN pitch controller and firing angles of the inverter switches. The simulation results performed on MATLAB show the variations of the generator torque, the generator rotor speed, the pitch angle, and real/reactive power injected into the grid, etc. Based on the simulation results, the effectiveness of the proposed controllers would be verified.List of symbols A Cross-sectional area of wind turbine rotor - Cp Power coefficient of wind turbine - D Turbine friction coefficient - Dg Generator friction coefficient - ids, iqs d-axis and q-axis components of stator current - J Moment of inertia of wind turbine - Jg Moment of inertia of generator - n Gear box turn ratio - Pm Power captured from wind by wind turbine - R Radius of rotor blades - Rs Stator resistance - T Mechanical input torque to wind turbine - Te Electromagnetic torque applied on generator shaft - T0 Transient open-circuit time constant of induction generator - T Actuators time constant - Wind speed - vds, vqs d-axis and q-axis components of stator voltage - d, q d-axis and q-axis voltages behind transient impedance - Vi DC link output voltage - Vs Generator terminal voltage - Vac AC voltage behind transformer - V Reference grid voltage - Xs Stator reactance of induction generator - Xs Transient reactance of induction generator - XL Interconnecting line reactance - Firing delay angle in switching of rectifier - Pitch angle of rotor blade - Tip-speed ratio - Angle at which inverter switch is on from zero state - Air density - Phase angle between AC voltage behind transformer and reference grid voltage - m Wind turbine rotor speed - g Generator rotor speed - s Synchronous speed 相似文献
19.
In this paper, to improve the dynamic performance of DFIG-based WT, a NADRC technology is proposed. The proposed NADRC can actively estimate and compensate the plant internal dynamics and external disturbances in real time. Therefore, it improves the tracking performance of the rotor current without any overshoot and steady-state error, and enhances the fault ride-through capability of DFIG-based wind turbine. Compared with the proportional PI control, the proposed NADRC during grid fault can significantly suppress the peak values of stator and rotor currents and DC-link voltage, and decrease the oscillation time of electromagnetic torque. Moreover, the proposed NADRC has a characteristic of one-parameter tuning by using the parameterization technique of controller, and parameter tuning of NADRC is only determined by the rise time of the system step response. A series of simulations for various cases on a 1.5-MW DFIG-based wind turbine are implemented, and the results validate the stability of the proposed NADRC and the strong robustness against the plant internal dynamics and external disturbances. 相似文献
20.
When fault occurs in the grid, the short circuit characteristics of doubly-fed induction generator (DFIG) are more complicated due to the coupling influence of generator electromagnetic transient and converter regulation. In view of this problem, a DFIG stator/rotor short circuit current calculation method considering the transient regulation of both rotor-side and grid-side converters is proposed in this paper. First, DFIG fault equivalent network considering the rotor-side converter control is established, and the analytical expressions of stator/rotor currents in this network are derived. On this basis, considering the DC bus voltage fluctuation, the double-loop transient control process of the gird converter in the short circuit process is described quantitatively. Thus, the mechanism of the second harmonic in the stator short circuit current is revealed, and the expression of the harmonic component is derived. Finally, the analytical expressions of stator and rotor short circuit full currents are obtained. Simulation results verify the correctness and feasibility of the proposed method. 相似文献