首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVES/METHODS: In addition to nitric oxide (NO) and prostacyclin, endothelium-dependent dilation is mediated by the endothelium-derived hyperpolarizing factor (EDHF) which, in the coronary circulation, has been characterised as a metabolite of arachidonic acid synthesised by an cytochrome P450 (CYP) epoxygenase homologous to CYP 2C8/9. As the promotor regions of CYP 2C8 and 2C9 contain consensus sequences for glucocorticoid response elements, we determined the effect of cortisol on EDHF-mediated relaxations as well as on the expression of CYP 2C in isolated segments of porcine coronary artery. RESULTS: Bradykinin-induced NO-mediated relaxation of KCl-constricted arterial rings was slightly attenuated following exposure to cortisol. However, EDHF-mediated relaxations of U46619-constricted arterial rings assessed in the presence of the cyclo-oxygenase inhibitor diclofenac and the NO synthase inhibitor N(omega)nitro-L-arginine (0.3 mM), were significantly enhanced (maximum relaxation: 66+/-7%, P<0.05 vs. control rings: 36+/-8%). Cortisol treatment (0.1 microM, 24 h) did not affect the endothelium-independent relaxation elicited by sodium nitroprusside and acute incubation with cortisol (0.1 microM, 30 min) did not alter either NO- or EDHF-mediated responses. The expression of CYP 2C (quantified by RT-PCR, Western blot analysis and confocal microscopy) was enhanced in porcine coronary endothelial cells following incubation with cortisol for 18-24 h. CONCLUSIONS: These results demonstrate the concomitant upregulation of EDHF-mediated relaxations and CYP 2C expression by long-term treatment with cortisol. These observations support the concept that an epoxygenase homologous to CYP 2C8/9 plays a crucial role in the generation of EDHF-mediated responses in the coronary endothelium.  相似文献   

2.
In the porcine coronary artery, a cytochrome P450 (CYP) isozyme homologous to CYP 2C8/9 has been identified as an endothelium-derived hyperpolarizing factor (EDHF) synthase. As some CYP enzymes are reported to generate reactive oxygen species (ROS), we hypothesized that the coronary EDHF synthase may modulate vascular homeostasis by the simultaneous production of ROS and epoxyeicosatrienoic acids. In bradykinin-stimulated coronary arteries, antisense oligonucleotides against CYP 2C almost abolished EDHF-mediated responses but potentiated nitric oxide (NO)-mediated relaxation. The selective CYP 2C9 inhibitor sulfaphenazole and the superoxide anion (O(2-)) scavengers Tiron and nordihydroguaretic acid also induced a leftward shift in the NO-mediated concentration-relaxation curve to bradykinin. CYP activity and O(2-) production, determined in microsomes prepared from cells overexpressing CYP 2C9, were almost completely inhibited by sulfaphenazole. Sulfaphenazole did not alter the activity of either CYP 2C8, the leukocyte NADPH oxidase, or xanthine oxidase. ROS generation in coronary artery rings, visualized using either ethidium or dichlorofluorescein fluorescence, was detected under basal conditions. The endothelial signal was attenuated by CYP 2C antisense treatment as well as by sulfaphenazole. In isolated coronary endothelial cells, bradykinin elicited a sulfaphenazole-sensitive increase in ROS production. Although 11,12 epoxyeicosatrienoic acid attenuated the activity of nuclear factor-kappaB in cultured human endothelial cells, nuclear factor-kappaB activity was enhanced after the induction or overexpression of CYP 2C9, as was the expression of vascular cell adhesion molecule-1. These results suggest that a CYP isozyme homologous to CYP 2C9 is a physiologically relevant generator of ROS in coronary endothelial cells and modulates both vascular tone and homeostasis.  相似文献   

3.
OBJECTIVE: Exogenous application of 20-hydroxyeicosatetraenoic acid (20-HETE) to small (300-500 microm) porcine coronary arteries elicits contraction by activating the Rho kinase and increasing the sensitivity of contractile proteins to Ca2+. Here, we determined whether 20-HETE is involved in the regulation of coronary artery tone as well as its role in the modulation of endothelium-derived hyperpolarizing factor (EDHF)-mediated responses. METHODS AND RESULTS: Small porcine coronary arteries expressed cytochrome P450 (CYP) 4A, as demonstrated by Western blot analysis, and generated 20-HETE. Moreover, 20-HETE production was increased two- and threefold over basal levels in response to isometric stretch or the thromboxane analogue U46619, respectively, and was inhibited by the CYP 4A inhibitor N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS). In vascular reactivity studies, DDMS attenuated U46619-induced contractions and induced a concentration-dependent but endothelium-independent relaxation of precontracted arterial rings. Endogenously generated 20-HETE significantly inhibited the EDHF-mediated relaxation of coronary arteries, which was potentiated by the phospholipase A2 inhibitors AACOCF3 and ONO-RS-082, as well as by the omega-hydroxylase inhibitors 17-octadecynoic acid and DDMS. EDHF-mediated relaxation was not affected by either the nonselective epoxygenase inhibitors miconazole and clotrimazole or the CYP 2C inhibitor sulfaphenazole but was abolished by the Na-K-ATPase inhibitor, ouabain. Exogenous application of 20-HETE inhibited EDHF-mediated relaxations and caused a concomitant increase in the phosphorylation of protein kinase Calpha (PKCalpha). This effect was reversed by the PKC inhibitor Ro-318220 and mimicked by the PKC activator phorbol-12 myristate 13-acetate. CONCLUSIONS: These results indicate that vascular tone in small porcine coronary arteries is partly determined by the endogenous production of 20-HETE. In addition, 20-HETE functionally antagonizes EDHF-mediated relaxation via a PKCalpha-dependent mechanism, probably involving the inhibition of the Na-K-ATPase.  相似文献   

4.
《Microvascular research》2012,83(3):356-363
Endothelium-derived hyperpolarizing factor (EDHF) is an important vasodilator that regulates the vasomotor function. However, it remains unclear whether diabetes/hyperglycemia-induced vascular impairments extend to the EDHF. The present study aims to determine the effect of high glucose (HG) on EDHF-mediated arteriolar dilation and the underlying mechanism. Porcine coronary arterioles were isolated and pressurized for vasomotor study. Cultured porcine coronary artery endothelial cells (ECs) were used for molecular and biochemical analysis. Our results demonstrate that bradykinin (BK)-simulated arteriolar dilation is mediated by nitric oxide (NO) and EDHF pathways. Direct incubation of HG impaired vasodilation to BK but not to sodium nitroprusside (endothelium-independent vasodilator). In the presence of inhibitors of endothelial NO synthase (eNOS) and cyclooxygenase, the EDHF-mediated dilation was reduced by HG incubation. The inhibitory effect of HG was prevented by treating the vessels with superoxide scavenger Tempol. In cultured coronary endothelial cells, HG reduced endothelial epoxyeicosatrienoic acid (EET) production as well as cytochrome P450 epoxygenase (CYP) activity. Furthermore, the superoxide production was elevated in ECs after HG incubation. Pretreatment with Tempol before HG incubation prevented the increase of cellular superoxide and abolished the decrease of CYP activity. Collectively, our results suggest that, in addition to NO-mediated pathway, HG impairs the EET/EDHF-mediated vasodilation in coronary arterioles via the elevated level of superoxide leading to inhibition of CYP activity in coronary ECs.  相似文献   

5.
Endothelium-derived hyperpolarizing factor (EDHF) is an important vasodilator that regulates the vasomotor function. However, it remains unclear whether diabetes/hyperglycemia-induced vascular impairments extend to the EDHF. The present study aims to determine the effect of high glucose (HG) on EDHF-mediated arteriolar dilation and the underlying mechanism. Porcine coronary arterioles were isolated and pressurized for vasomotor study. Cultured porcine coronary artery endothelial cells (ECs) were used for molecular and biochemical analysis. Our results demonstrate that bradykinin (BK)-simulated arteriolar dilation is mediated by nitric oxide (NO) and EDHF pathways. Direct incubation of HG impaired vasodilation to BK but not to sodium nitroprusside (endothelium-independent vasodilator). In the presence of inhibitors of endothelial NO synthase (eNOS) and cyclooxygenase, the EDHF-mediated dilation was reduced by HG incubation. The inhibitory effect of HG was prevented by treating the vessels with superoxide scavenger Tempol. In cultured coronary endothelial cells, HG reduced endothelial epoxyeicosatrienoic acid (EET) production as well as cytochrome P450 epoxygenase (CYP) activity. Furthermore, the superoxide production was elevated in ECs after HG incubation. Pretreatment with Tempol before HG incubation prevented the increase of cellular superoxide and abolished the decrease of CYP activity. Collectively, our results suggest that, in addition to NO-mediated pathway, HG impairs the EET/EDHF-mediated vasodilation in coronary arterioles via the elevated level of superoxide leading to inhibition of CYP activity in coronary ECs.  相似文献   

6.
The endothelium controls vascular tone not only by releasing nitric oxide (NO) and prostacyclin but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the denomination endothelium-derived hyperpolarizing factor (EDHF). We know now that this acronym includes different mechanisms. In general, EDHF-mediated responses involve an increase in the intracellular calcium concentration, the opening of calcium-activated potassium channels of small and intermediate conductance and the hyperpolarization of the endothelial cells. This results in an endothelium-dependent hyperpolarization of the smooth muscle cells, which can be evoked by direct electrical coupling through myo-endothelial junctions and/or the accumulation of potassium ions in the intercellular space. Potassium ions hyperpolarize the smooth muscle cells by activating inward rectifying potassium channels and/or Na+/K(+)-ATPase. In some blood vessels, including large and small coronary arteries, the endothelium releases arachidonic acid metabolites derived from cytochrome P450 monooxygenases. The epoxyeicosatrienoic acids (EET) generated are not only intracellular messengers but also can diffuse and hyperpolarize the smooth muscle cells by activating large conductance calcium-activated potassium channels. Additionally, the endothelium can produce other factors such as lipoxygenases derivatives or hydrogen peroxide (H2O2). These different mechanisms are not necessarily exclusive and can occur simultaneously.  相似文献   

7.
In resistance arteries, spread of hyperpolarization from the endothelium to the adjacent smooth muscle is suggested to be a crucial component of dilation resulting from endothelium-derived hyperpolarizing factor (EDHF). To probe the role of endothelial gap junctions in EDHF-mediated dilation, we developed a method, which was originally used to load membrane impermeant molecules into cells in culture, to load connexin (Cx)-specific inhibitory molecules rapidly (approximately 15 minutes) into endothelial cells within isolated, pressurized mesenteric arteries of the rat. Validation was achieved by luminally loading cell-impermeant fluorescent dyes selectively into virtually all the arterial endothelial cells, without affecting either tissue morphology or function. The endothelial monolayer served as an effective barrier, preventing macromolecules from entering the underlying smooth muscle cells. Using this technique, endothelial cell loading either with antibodies to the intracellular carboxyl-terminal region of Cx40 (residues 340 to 358) or mimetic peptide for the cytoplasmic loop (Cx40; residues 130 to 140) each markedly depressed EDHF-mediated dilation. In contrast, multiple antibodies directed against different intracellular regions of Cx37 and Cx43, and mimetic peptide for the intracellular loop region of Cx37, were each without effect. Furthermore, simultaneous intra- and extraluminal incubation of pressurized arteries with inhibitory peptides targeted against extracellular regions of endothelial cell Cxs (43Gap 26, 40Gap 27, and (37,43)Gap 27; 300 micromol/L each) for 2 hours also failed to modify the EDHF response. High-resolution immunohistochemistry localized Cx40 to the end of endothelial cell projections at myoendothelial gap junctions. These data directly demonstrate a critical role for Cx40 in EDHF-mediated dilation of rat mesenteric arteries.  相似文献   

8.
The alternative: EDHF   总被引:22,自引:0,他引:22  
Endothelium-dependent relaxations cannot be fully explained by the release of either NO or/and prostacyclin. Another unidentified substance(s) which hyperpolarizes the underlying vascular smooth muscle cells may contribute to endothelium-dependent relaxations, especially in small arteries. It has been termed endothelium-derived hyperpolarizing factor (EDHF). In blood vessels from various species including humans, endothelium-dependent relaxations are partially or totally resistant to inhibitors of NO synthase and cyclooxygenase and are observed without an increase in the intracellular level of cyclic nucleotides in the vascular smooth muscle cells. In some species (canine, porcine and human) nitrovasodilators do not cause hyperpolarization while in other (rat, guinea-pig, rabbit), they evoke glibenclamide-sensitive hyperpolarization, suggesting the involvement of ATP-dependent potassium channels. In contrast, hyperpolarizations caused by EDHF are insensitive to glibenclamide but are inhibited by apamin or the combination of charybdotoxin plus apamin, indicating that NO and EDHF interact with two different targets. The existence of EDHF as a diffusable substance has been demonstrated under bioassay conditions whereby the source of EDHF was either native vascular segments or cultured endothelial cells. The identification of EDHF may allow a better understanding of its physiological and pathophysiological role(s).  相似文献   

9.
Endothelium-dependent hyperpolarization of vascular smooth muscle provides a major pathway for relaxation in resistance arteries. This can occur due to direct electrical coupling via myoendothelial gap junctions (MEGJs) and/or the release of factors (EDHF). Here we provide evidence for the existence of functional MEGJs in the same, defined branches of BALB/C mouse mesenteric arteries which show robust EDHF-mediated smooth muscle relaxation. Cyclopiazonic acid (CPA, 10 microM) was used to stimulate EDHF in arteries mounted under isometric conditions and constricted with phenylephrine. Simultaneous measurement of smooth muscle membrane potential and tension demonstrated that CPA caused a hyperpolarization of around 10 mV, reversing the depolarization to phenylephrine by 94% and the associated constriction by 66%. The relaxation to CPA was endothelium dependent, associated with the opening of Ca2+-activated K channels, and only in part due to the release of nitric oxide (NO). In the presence of the NO synthase inhibitor, L-NAME (100 microM), the relaxation to CPA could be almost completely inhibited with the putative gap junction uncoupler, carbenoxolone (100 microM). Inhibition of the synthesis of prostaglandins or metabolites of arachidonic acid had no effect under the same conditions, and small rises in exogenous K+ failed to evoke consistent or marked smooth muscle relaxation, arguing against a role for these molecules and ions as EDHF. Serial section electron microscopy revealed a high incidence of MEGJs, which was correlated with heterocellular dye coupling. Taken together, these functional and morphological data from a defined mouse resistance artery suggest that the EDHF response in this vessel may be explained by extensive heterocellular coupling through MEGJs, enabling spread of hyperpolarizing current.  相似文献   

10.
Endothelium-derived hyperpolarizing factor   总被引:1,自引:0,他引:1  
K Komori  P M Vanhoutte 《Blood vessels》1990,27(2-5):238-245
Although nitric oxide appears to be the major endothelium-derived relaxing factor (EDRF), it cannot explain all endothelium-dependent responses of isolated arteries. Thus, acetylcholine causes an endothelium-dependent, transient hyperpolarization, which is due to the release from the endothelial cells of a diffusible substance (endothelium-derived hyperpolarizing factor, EDHF) other than nitric oxide. The muscarinic receptors on the endothelium that trigger the release of EDHF belong to the M1-muscarinic subtype, while those activating the liberation of EDRF are M2-muscarinic in nature. The importance of endothelium-dependent hyperpolarization varies among different blood vessels. The hyperpolarization, and the resulting relaxation caused by EDHF can be attributed to an increase in K+ conductance in the vascular smooth muscle. Although the nature of EDHF remains elusive, it may be a labile metabolic of arachidonic acid.  相似文献   

11.
The endothelium plays a key role in the control of vascular tone and alteration in endothelial cell function contributes to several cardiovascular disease states. Endothelium-dependent dilation is mediated by NO, prostacyclin, and an endothelium-derived hyperpolarizing factor (EDHF). EDHF signaling is thought to be initiated by activation of endothelial Ca(2+)-activated K(+) channels (K(Ca)), leading to hyperpolarization of the endothelium and subsequently to hyperpolarization and relaxation of vascular smooth muscle. In the present study, we tested the functional role of the endothelial intermediate-conductance K(Ca) (IK(Ca)/K(Ca)3.1) in endothelial hyperpolarization, in EDHF-mediated dilation, and in the control of arterial pressure by targeted deletion of K(Ca)3.1. K(Ca)3.1-deficient mice (K(Ca)3.1(-/-)) were generated by conventional gene-targeting strategies. Endothelial K(Ca) currents and EDHF-mediated dilations were characterized by patch-clamp analysis, myography and intravital microscopy. Disruption of the K(Ca)3.1 gene abolished endothelial K(Ca)3.1 currents and significantly diminished overall current through K(Ca) channels. As a consequence, endothelial and smooth muscle hyperpolarization in response to acetylcholine was reduced in K(Ca)3.1(-/-) mice. Acetylcholine-induced dilations were impaired in the carotid artery and in resistance vessels because of a substantial reduction of EDHF-mediated dilation in K(Ca)3.1(-/-) mice. Moreover, the loss of K(Ca)3.1 led to a significant increase in arterial blood pressure and to mild left ventricular hypertrophy. These results indicate that the endothelial K(Ca)3.1 is a fundamental determinant of endothelial hyperpolarization and EDHF signaling and, thereby, a crucial determinant in the control of vascular tone and overall circulatory regulation.  相似文献   

12.
OBJECTIVE: Cholesterol-rich membrane domains, which contain the scaffold protein caveolin-1 (Cav-1) (caveolae), represent an important structural element involved in endothelial signal transduction. The present study was designed to investigate the role of these signaling platforms in the generation of endothelial-derived hyperpolarizing factor (EDHF). METHODS: Caveolae were disrupted by cholesterol depletion with methyl-beta-cyclodextrin (MbetaCD 10 mM). MbetaCD-induced modulation of non-nitric oxide-/non-prostanoid-dependent (EDHF)-mediated vasorelaxation was studied in pig coronary arteries. Effects of MbetaCD on endothelial Ca(2+) signaling and phospholipase A(2) (cPLA(2)) activity were determined using fura-2 imaging and measurement of [(3)H]-arachidonate mobilization in cultured pig aortic endothelial cells (PAEC). Cellular localization of caveolin-1 and phospholipase A(2) was investigated by cell fractionation, and interaction of cPLA(2) with caveolin-1 was tested by immunoprecipitation experiments. RESULTS: MbetaCD inhibited EDHF-mediated relaxations of pig coronary arteries induced by bradykinin (100 nM) or ionomycin (300 nM) but not relaxations induced by the NO donor DEA/NO (1 microM). Exposure of arteries to cholesterol-saturated MbetaCD failed to affect EDHF-mediated relaxations. Cholesterol depletion with MbetaCD did not affect bradykinin or ionomycin-induced Ca(2+) signaling in pig aortic endothelial cells, but was associated with enhanced basal and reduced Ca(2+)-dependent release of arachidonic acid (AA). Cell fractionation experiments indicated targeting of cPLA(2) to low density, caveolin-1 rich membranes and immunoprecipitation experiments demonstrated association of phospholipase A(2) with the scaffold protein of caveolae, caveolin-1. Cholesterol depletion with MbetaCD did not disrupt the interaction between cPLA(2) and caveolin-1 but prevented targeting of cPLA(2) to low density membranes. Exogenous supplementation of arachidonic acid after cholesterol depletion partially restored EHDF responses in pig coronary arteries. CONCLUSION: The integrity of caveolin-1-containing membrane microdomains is prerequisite for arachidonic acid recruitment and EDHF signaling in porcine arteries.  相似文献   

13.
Arterial hyperpolarization to acetylcholine (ACh) reflects coactivation of K(Ca)3.1 (IK(Ca)) channels and K(Ca)2.3 (SK(Ca)) channels in the endothelium that transfers through myoendothelial gap junctions and diffusible factor(s) to affect smooth muscle relaxation (endothelium-derived hyperpolarizing factor [EDHF] response). However, ACh can differentially activate K(Ca)3.1 and K(Ca)2.3 channels, and we investigated the mechanisms responsible in rat mesenteric arteries. K(Ca)3.1 channel input to EDHF hyperpolarization was enhanced by reducing external [Ca(2+)](o) but blocked either with forskolin to activate protein kinase A or by limiting smooth muscle [Ca(2+)](i) increases stimulated by phenylephrine depolarization. Imaging [Ca(2+)](i) within the endothelial cell projections forming myoendothelial gap junctions revealed increases in cytoplasmic [Ca(2+)](i) during endothelial stimulation with ACh that were unaffected by simultaneous increases in muscle [Ca(2+)](i) evoked by phenylephrine. If gap junctions were uncoupled, K(Ca)3.1 channels became the predominant input to EDHF hyperpolarization, and relaxation was inhibited with ouabain, implicating a crucial link through Na(+)/K(+)-ATPase. There was no evidence for an equivalent link through K(Ca)2.3 channels nor between these channels and the putative EDHF pathway involving natriuretic peptide receptor-C. Reconstruction of confocal z-stack images from pressurized arteries revealed K(Ca)2.3 immunostain at endothelial cell borders, including endothelial cell projections, whereas K(Ca)3.1 channels and Na(+)/K(+)-ATPase alpha(2)/alpha(3) subunits were highly concentrated in endothelial cell projections and adjacent to myoendothelial gap junctions. Thus, extracellular [Ca(2+)](o) appears to modify K(Ca)3.1 channel activity through a protein kinase A-dependent mechanism independent of changes in endothelial [Ca(2+)](i). The resulting hyperpolarization links to arterial relaxation largely through Na(+)/K(+)-ATPase, possibly reflecting K(+) acting as an EDHF. In contrast, K(Ca)2.3 hyperpolarization appears mainly to affect relaxation through myoendothelial gap junctions. Overall, these data suggest that K(+) and myoendothelial coupling evoke EDHF-mediated relaxation through distinct, definable pathways.  相似文献   

14.
Although the chemical nature of endothelium-derived hyperpolarizing factor (EDHF) remains elusive, electrophysiological evidence exists for electrical communication between smooth muscle cells and endothelial cells suggesting that electrotonic propagation of hyperpolarization may explain the failure to identify a single chemical factor as EDHF. Anatomical evidence for myoendothelial gap junctions, or the sites of electrical coupling, is, however, rare. In the present study, serial-section electron microscopy and reconstruction techniques have been used to examine the incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat where EDHF responses have been reported to vary. Myoendothelial gap junctions were found to be very small in the mesenteric arteries, the majority being <100 nm in diameter. In addition, they were significantly more common in the distal compared with the proximal regions of this arterial bed. Pentalaminar gap junctions between adjacent endothelial cells were much larger and were common in both proximal and distal mesenteric arteries. These latter junctions were frequently found near the myoendothelial gap junctions. These results provide the first evidence for the presence of sites for electrical communication between endothelial cells and smooth muscle cells in the mesenteric vascular bed. Furthermore, the relative incidence of these sites suggests that there may be a relationship between the activity of EDHF and the presence of myoendothelial gap junctions.  相似文献   

15.
Endothelial cells in most vascular beds release a factor that hyperpolarizes the underlying smooth muscle, produces vasodilatation, and plays a fundamental role in the regulation of local blood flow and systemic blood pressure. The identity of this endothelium-derived hyperpolarizing factor (EDHF), which is neither NO nor prostacyclin, remains obscure. Herein, we demonstrate that in mesenteric resistance arteries, release of C-type natriuretic peptide (CNP) accounts for the biological activity of EDHF. Both produce identical smooth muscle hyperpolarizations that are attenuated in the presence of high [K(+)], the G(i) G protein (G(i)) inhibitor pertussis toxin, the G protein-gated inwardly rectifying K(+) channel inhibitor tertiapin, and a combination of Ba(2+) (inwardly rectifying K(+) channel blocker) plus ouabain (Na(+)K(+)-ATPase inhibitor). Responses to EDHF and CNP are unaffected by the natriuretic peptide receptor (NPR)-AB antagonist HS-142-1, but mimicked by the selective NPR-C agonist, cANF(4-23). EDHF-dependent relaxation is concomitant with liberation of endothelial CNP; in the presence of the myoendothelial gap-junction inhibitor 18alpha-glycyrrhetinic acid or after endothelial denudation, CNP release and EDHF responses are profoundly suppressed. These data demonstrate that acetylcholine-evoked release of endothelial CNP activates NPR-C on vascular smooth muscle that via a G(i) coupling promotes Ba(2+)ouabain-sensitive hyperpolarization. Thus, we have revealed the identity of EDHF and established a pivotal role for endothelial-derived CNP in the regulation of vascular tone and blood flow.  相似文献   

16.
OBJECTIVE: Hyperthyroidism has pronounced effects on vascular function and endothelium-dependent relaxation. The aim of the present study was to identify mechanisms underlying hyperthyroidism-induced alterations in endothelial function in rats. METHODS: Animals were subjected to either a single injection (36 h) or 8 weeks treatment with the thyroid hormone triiodothyronine (T3, i.p.). Vascular reactivity and agonist-induced hyperpolarization were studied in isolated renal arteries. Endothelial nitric oxide (NO) synthase expression and cyclic AMP accumulation were determined in aortic segments. RESULTS: Endothelium-dependent relaxations to acetylcholine (ACh) were enhanced by T3 36 h after injection and after treatment for 8 weeks. Thirty-six hours after T3 application, relaxation mediated by the endothelium-derived hyperpolarizing factor (EDHF) and by endothelium-derived NO were significantly enhanced. After 8 weeks treatment with T3, however, EDHF-mediated relaxation was impaired, whereas NO-mediated relaxation remained enhanced. KCl- and ACh-induced hyperpolarizations were more pronounced in arteries from rats treated with T3 for 36 h compared to control, whereas in arteries from rats treated with T3 for 8 weeks both responses were attenuated. In rats treated for 36 h, vascular cyclic AMP levels were enhanced in the aorta and inhibition of protein kinase A attenuated EDHF-mediated relaxations of the renal artery without affecting responses in arteries from the control group. In the aorta from rats treated with T3 for 8 weeks, the expression of the endothelial NO synthase was markedly up-regulated (463+/-68%). CONCLUSIONS: These data indicate that short-term treatment with T3 increases endothelium-dependent relaxation, most probably by increasing vascular cyclic AMP content. Following treatment with T3 for 8 weeks, expression of the endothelial NO synthase was enhanced. During this phase, NO appears to be the predominant endothelium-derived vasodilator.  相似文献   

17.
We have investigated the role of cAMP in NO- and prostanoid-independent relaxations that are widely attributed to an endothelium-derived hyperpolarizing factor (EDHF). Under control conditions EDHF-type relaxations evoked by acetylcholine (ACh) in rabbit iliac arteries were transient, but in the presence of the cAMP phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) or the cell permeant cAMP analog 8-bromo-cAMP, relaxations became sustained with their maxima potentiated approximately 2-fold. Relaxation was associated with transient approximately 1.5-fold elevations in smooth muscle cAMP levels with both mechanical and nucleotide responses being abolished by interrupting gap junctional communication with the connexin-mimetic peptide Gap 27 and by endothelial denudation. However, IBMX induced a sustained endothelium-independent approximately 2-fold rise in cAMP levels, which was not further amplified by ACh, suggesting that the contribution of cAMP to the EDHF phenomenon is permissive. After selective loading of the endothelium with calcein AM, direct transfer of dye from the endothelium to the media was enhanced by IBMX or 8-bromo-cAMP, but not by 8-bromo-cGMP, whereas Gap 27 promoted sequestration within the intima. ACh-induced hyperpolarizations of subintimal smooth muscle in arterial strips with intact endothelium were abolished by Gap 27 and the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine but were unaffected by IBMX. By contrast, in strips partially denuded of endothelium, IBMX enhanced the transmission of hyperpolarization from the endothelium to remote smooth muscle cells. These findings support the hypothesis that endothelial hyperpolarization underpins the EDHF phenomenon, with cAMP governing subsequent electrotonic signaling via both myoendothelial and homocellular smooth muscle gap junctions.  相似文献   

18.
Under resting conditions the arterial vasculature exists in a vasoconstricted state referred to as vascular tone. Physiological dilatation in response to increased flow, a function of normal endothelium is necessary to maintain normal blood pressure. Endothelial dysfunction in vascular smooth muscle cells thus results in loss of normal vasorelaxant function and the inability of arteries to appropriately dilate in response to increased blood flow in either a systemic or regional vascular bed, resulting in increased blood pressure, a sequence that may represent a common pathway to hypertension. Normal vasorelaxation is mediated by a number of endothelial systems including nitric oxide (NO), prostaglandins (PGI2 and PGE2), and a family of endothelial-derived hyperpolarizing factors (EDHF). In response to hemodynamic shear stress, endothelium continuously releases NO, EDHF, and PGI2 to provide vasodilatation. EDHF, not a single molecule but rather a group of molecules that includes epoxyeicosatrienoic acids, hydrogen peroxide, carbon monoxide, hydrogen sulfide, C-natriuretic peptide, and K+ itself, causes vasodilatation by activation of vascular smooth muscle cell K+ channels, resulting in hyperpolarization and thus vasorelaxation. The understanding and effective management of blood pressure requires an understanding of both physiologic and pathophysiologic regulation of vascular tone. This review describes molecular mechanisms underlying normal endothelial regulation and pathological states, such as increased oxidative stress, which cause loss of vasorelaxation. Possible pharmacological interventions to restore normal function are suggested.  相似文献   

19.
The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several vasodilating substances, including vasodilator prostaglandins, nitric oxide (NO), and endothelium-derived hyperpolarizing factor (EDHF). Since the first report for the existence of EDHF, several substances/mechanisms have been proposed for the nature of EDHF, including epoxyeicosatrienoic acids (metabolites of arachidonic P450 epoxygenase pathway), K ions, and electrical communications through myoendothelial gap junctions. We have recently demonstrated that endothelium-derived hydrogen peroxide (H(2)O(2)) is an EDHF in mouse and human mesenteric arteries and in porcine coronary microvessels. For the synthesis of H(2)O(2) as an EDHF, endothelial Cu,Zn-superoxide dismutase plays an important role in mesenteric arteries of mice and humans. We also have demonstrated that EDHF-mediated responses are attenuated by several arteriosclerotic risk factors, including diabetes mellitus and hyperlipidemia and their combination in particular. Recent studies have indicated that endothelium-derived H(2)O(2) plays an important protective role in coronary autoregulation and myocardial ischemia/reperfusion injury in vivo. Indeed, our H(2)O(2)/EDHF theory demonstrates that endothelium-derived H(2)O(2), another reactive oxygen species in addition to NO, plays an important role as a redox signaling molecule to cause vasodilatation as well as cardioprotection. In this review, we summarize our knowledge on H(2)O(2)/EDHF regarding its identification, mechanisms of synthesis, and clinical implications.  相似文献   

20.
OBJECTIVE: It is controversial whether endothelium-dependent relaxation resistance to inhibitors of nitric oxide (NO) and prostacyclin synthases is completely attributed to endothelium-derived hyperpolarizing factor (EDHF). This study examined NO release and K+ channels involved in endothelium-dependent relaxation and hyperpolarization resistance to N(G)-nitro-L-arginine (L-NNA) and indomethacin in coronary arteries with emphasis on the microarteries. METHODS: NO release, isometric force, and membrane potential of porcine coronary arteries were measured using a NO-specific electrode, wire myograph, and microelectrode, respectively. RESULTS: In large arteries pretreated with indomethacin, bradykinin (BK) evoked a rise in [NO] from 5.5+/-2.4 nM to 105.0+/-19.6 nM and hyperpolarization. L-NNA treatment significantly reduced the BK-stimulated rise in [NO] to 32.1+/-11.3 nM but did not affect the hyperpolarization. In the presence of indomethacin and L-NNA, U46619 contracted and depolarized (from -51+/-3 mV to -30+/-4 mV) vascular smooth muscle in microarteries. The addition of BK produced dose-dependent relaxation (maximal: 70.2+/-5.7%) and repolarization (membrane potential: -50+/-4 mV). Oxyhemoglobin eliminated indomethacin and L-NNA-resistance rise in [NO] but not relaxation (42.3+/-4.4%) and repolarization (-40+/-2 mV) by BK. Tetraethylammonium, charybdotoxin, and iberiotoxin partially decreased the BK-induced responses. Apamin alone did not affect the relaxation by BK; however, in combination with charybdotoxin it almost completely abolished the BK-induced relaxation and hyperpolarization. CONCLUSIONS: In porcine coronary arteries, both EDHF and NO contribute to BK-induced relaxation resistance to indomethacin and L-NNA. Large conductance Ca2+-activated K+ channels (BK(Ca)) may play an important role in mediating the BK-induced responses and small conductance Ca2+-activated K+ channels might function as 'backup' mechanisms when BK(Ca) is curtailed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号