首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王彦芳  李豪  石志强  肖亚梅  孙旭  王亭 《红外与激光工程》2017,46(8):806001-0806001(5)
Fe基非晶合金具有优异的机械性能与耐蚀性。采用激光熔覆技术在304L不锈钢基体表面熔覆Fe-Cr-Ni-Co-B非晶粉末涂层,利用X射线衍射仪、光学显微镜、扫描电镜和电化学测试系统研究了涂层组织及耐蚀性能。研究结果表明,涂层组织涂层均匀、致密,无裂纹、气孔等缺陷。结合区为平面晶和柱状晶、熔覆层为丝条状树枝晶。熔覆层各区域由于成分和冷却速度的差异,致使树枝晶的大小和生长方向明显不同。涂层主要由Fe64Ni36和(FeCrNi)固溶体组成。熔覆层硬度分布较为均匀,涂层平均硬度约为480HV0.2,约是304L不锈钢基材的2.5倍。熔覆层的腐蚀电位高于304L基材,自腐蚀电流密度小于304L基材,具有较强的耐蚀性。  相似文献   

2.
高速激光熔覆能大大提高熔覆效率,但高速激光熔覆层表面容易出现表面粗糙缺陷.采用高速激光熔覆和激光重熔混合工艺,可达到改善熔覆层表面质量、有效提升涂层性能的目的 .在液压立柱材料27SiMn表面激光熔覆制备了Fe90不锈钢涂层,利用超景深显微镜、X射线多晶衍射仪分别对熔覆层的表面形貌、微观组织结构、元素分布和物相构成进行了分析,通过硬度试验、耐磨损试验和电化学腐蚀试验对涂层的性能进行了验证.试验结果表明:涂层激光重熔后相比于重熔前表面粗糙度降低了8.5%,涂层内部的微观组织更加细密均匀,没有相的消失和新相的出现,只是相的含量增加.在性能方面,重熔之后的硬度提高为基体的2.6倍,磨损失重降低95%.采用激光重熔技术不仅改善了熔覆层表面质量,而且有效提升了涂层性能.  相似文献   

3.
基于激光熔覆同轴送粉技术,在2Cr13不锈钢表面制备了Stellite6合金涂层,研究了工艺参数对涂层宏观形貌的影响,分析了涂层的显微组织和显微硬度。研究结果表明:在激光功率为2.5 kW,扫描速度为5 mm/s,送粉速率为13.2 g/min,搭接率为38 %时,可获得平整无缺陷的Stellite6涂层。熔覆层可分为一次熔化区、道间重熔区和层间重熔区。熔覆层的组织主要由胞状晶和树枝晶构成;相比于一次熔化区,道间重熔区和层间重熔区的组织较为粗大。通过合理调整道间停留时间和层间停留时间,可使熔覆层周期性循环组织中的一次熔化区的组织占比从54.9 %提升至73.1 %,从而提升熔覆层的整体硬度。  相似文献   

4.
采用同轴送粉法,通过YLS-4000多模光纤激光器以不同功率在高锰钢表面激光熔覆Ni/WC陶瓷复合涂层,通过光学显微镜、显微硬度计,对涂层的组织形貌、显微硬度进行了分析研究,做了室温干摩擦磨损试验并分析研究了涂层的耐磨性能。结果表明,Ni/WC层组织沿深度方向依次出现细小的胞状晶、树枝晶、柱状树枝晶和薄的平面晶,在1600 W、1900 W、2200 W的激光功率下对应的Ni/WC层的平均显微硬度分别为980.7 HV0.1、901.0 HV0.1、809.4 HV0.1,分别为基材平均显微硬度的2.8、2.5、2.3倍。在相同摩擦磨损试验条件下,基体的磨损量是激光功率为1600 W条件下的熔覆层的10.4倍,在激光功率为1600 W时,通过激光熔覆获得了组织致密均匀、硬度高和具有良好耐磨性的涂层。  相似文献   

5.
为研究激光熔覆过程中重熔功率对熔覆层的形貌和性能影响,采用激光重熔技术,在Ti6Al4V钛合金表面制备了铁基/TiC复合涂层。采用着色渗透探伤剂和金相显微镜观察了熔覆层表面裂纹和气孔的分布情况,利用维氏硬度计和摩擦磨损测试仪表征了熔覆层的截面显微硬度和摩擦磨损性能。结果表明,重熔功率的增加能够有效地抑制熔覆层的裂纹和气孔;在力学性能方面,重熔后的熔覆层维氏硬度约是Ti6Al4V钛合金基体的8倍,当重熔功率为1 200 W时,所制备的铁基/TiC复合涂层的平均维氏硬度达到最大值,约为1 188 HV;此外,随着激光重熔功率增大,铁基/TiC复合涂层在磨擦磨损的过程中可以有效地阻止磨粒和摩擦副对熔覆层的微切削与塑性变形,同时,熔覆层的磨损量降低,摩擦系数降低。  相似文献   

6.
利用扫描电镜和能谱仪对TC4合金表面激光熔覆WC-12Co熔覆区的组织和成分进行了研究。结果表明,熔覆层组织为多边形的大颗粒WC和其间分布的细小的树枝晶。TC4合金表面激光熔覆WC-12Co可以实现涂层与基体之间良好的冶金结合,激光熔覆层的最高硬度达1200HV。  相似文献   

7.
利用3 kW光纤同轴激光熔覆设备将Fe-Cr-Mo-Si合金粉末熔覆到Q235钢表面,制备出了耐磨的铁基合金熔覆层,通过金相显微镜、维氏硬度计和摩擦磨损试验机等设备研究了Fe-Cr-Mo-Si熔覆层的显微组织、硬度及摩擦磨损行为.结果 发现:Fe-Cr-Mo-Si熔覆层的显微组织均匀致密,且无气孔、裂纹等缺陷;熔覆层主要由树枝晶组成,熔覆层/Q235钢结合面处形成了细小的平面晶组织,熔覆层与基体实现了良好的冶金结合;熔覆层的平均硬度为642.2 HV,约为基体硬度的4倍;当载荷为50N时,熔覆层和基体试样的平均摩擦因数分别是0.621和0.512,熔覆层的磨损量仅为基体的14.6%;摩擦因数随载荷的增加而减小,磨损轮廓尺寸随载荷的增加而增大;熔覆层的磨损机制为磨粒磨损和黏着磨损,而基体的磨损机制以黏着磨损和疲劳剥落磨损为主.试验结果表明,在Q235钢表面激光熔覆Fe-Cr-Mo-Si合金粉末能够显著提高材料的耐磨性能.  相似文献   

8.
采用激光熔覆技术在Q235钢基体上制备了不同La2O3含量的镍基纳米Al2O3复合涂层。通过扫描电镜观察分析了熔覆层的微观组织结构,并对熔覆层的显微硬度和摩擦磨损性能进行了测试。试验结果表明,加入1.5wt%稀土La2O3时,熔覆层组织显著细化,由细小的等轴树枝晶和共晶组织组成,熔覆涂层的显微硬度在651.4HV0.2至732.4HV0.2之间,耐磨性能显著提高。  相似文献   

9.
激光熔覆纳米碳化钨涂层组织和性能   总被引:5,自引:3,他引:5  
姚建华  张伟 《应用激光》2005,25(5):293-295
采用7KW横流CO2激光器在2Cr13不锈钢基体上进行了激光熔覆纳米WC粉末的实验。使用扫描电镜(SEM)、X射线衍射(XRD)、X射线能量色散谱仪(EDAX)、显微硬度仪等设备检验了涂层的组织和性能。结果表明:采用激光熔覆纳米WC粉末的方法可以得到致密的复合涂层;涂层熔覆区呈现出典型的Fe的胞状树枝晶和树枝晶间的Fe-C-W组织;XRD分析表明,复合涂层主要由Fe、WC、W2C和Fe3C几种相组成;涂层的性能测试结果表明:表面硬度为1750HV,熔覆层平均硬度为1200HV,耐磨损性能比基体提高了2.5倍。  相似文献   

10.
铁基合金粉末的激光熔覆性能实验研究   总被引:1,自引:0,他引:1  
毛怀东  张大卫 《应用激光》2007,27(4):273-277
通过用配置的铁基合金粉末针对不同的基体材料的多次激光熔覆实验,得出熔覆层硬度因熔池的快速冷却得到极大提高.分析显示熔覆层组织主要为富C、B、Si的树枝晶和Fe-Cr马氏体组织.相变体积的膨胀可抵消部分热收缩应变,可得到大面积高硬度无裂纹涂层.随试件体积和热容的增大,熔池冷却速度加快,一次性枝晶减少,马氏体的过饱和度增大,涂层硬度进一步提高.耐磨对比试验证明,铁基合金熔覆层和Cr12淬火基体相比,耐磨性有较大提高.  相似文献   

11.
为研究重熔功率对Inconel 718镍基自润滑涂层组织与性能的影响规律,采用激光熔覆技术在27SiMn钢板材上制备Inconel 718熔覆涂层,选用三种不同的激光功率二次重熔熔覆试样。使用超景深显微镜观察熔覆层表面形貌及金相组织,使用显微硬度计检测熔覆层的显微硬度,使用销-盘式摩擦磨损试验机检验及评价熔覆层的摩擦磨损性能。结果表明,激光重熔后熔覆层的晶粒得到明显的细化,随着重熔功率的增加,熔覆层晶粒尺寸先减小后增大,重熔功率为1 260 W时,熔覆层顶部晶粒尺寸最均匀细小;重熔后熔覆层的硬度均有较大提高,相较未重熔试件硬度最高可提升22%;从磨损形貌来看,试样的磨损机理主要为磨粒磨损,经重熔后试样的摩擦系数及磨损失重均得到了明显的降低。分析摩擦磨损试验数据可知,重熔功率在1 260 W时,试件的耐磨性能最好。  相似文献   

12.
杨宁  李立凯  晁明举 《激光技术》2012,36(5):627-631
为了提高45#钢表面强度和耐磨性,采用激光熔覆技术制备原位生长VC-WxC颗粒增强镍基涂层。使用金相显微镜、扫描电镜、电子能谱和X射线衍射仪对熔覆层显微组织和物相进行了分析,并对熔覆层显微硬度及摩擦性能进行了测试。在适当工艺条件下,熔覆层成形良好,涂层与基体呈现良好的冶金结合;熔覆层底部组织为定向生长的 γ(NiFe)树枝晶,熔覆层中上部组织为VC,W2C,WC和Cr3C2相,均匀分布于γ(NiFe)树枝晶基体中;熔覆层具有极高的硬度(平均HV0.31400),耐磨性是纯Ni60涂层的6倍。结果表明,其硬度和耐磨性的提高归因于涂层中大量的VC,W2C,WC和Cr3C2相的生成,并均匀分布于涂层的基体中。  相似文献   

13.
采用激光同轴送粉技术制备Stellite6钴基熔覆层,通过正交试验、单层单道、单层多道和多层多道工艺试验优化激光熔覆工艺参数。利用扫描电子显微镜、光学显微镜、X射线衍射仪表征了熔覆层显微组织结构,同时分析了微观硬度和耐摩擦磨损性能。结果表明,以熔覆层稀释率、成形系数和显微硬度为优化目标参数,可有效筛选激光熔覆Stellite6涂层制备工艺。所制备Stellite6涂层组织均匀,熔合线附近为平面晶,涂层中部区域为树枝晶,顶部区域为等轴晶。熔覆层物相由fcc-Co、(Co, W)3C与Cr23C6等组成,平均硬度为457 HV。熔覆层耐摩擦磨损性能优于316L不锈钢基体,其主要磨损机制为磨粒磨损。  相似文献   

14.
激光宽带熔覆技术广泛应用于大型工件表面的强化、修复和改性,较少的搭接次数使其更容易获得表面质量较好的熔覆层和较高的熔覆效率。针对现有激光宽带熔覆中光外送粉不精准、金属粉末受热不均匀和光粉同轴耦合精度不高等问题,本文提出了一种光内送粉激光宽带熔覆工艺及方法,实现了在宽带激光束内部均匀,准确地垂直于熔池表面送粉。在水平和30°斜壁上分别进行单道堆积熔覆实验。结果表明,重力对斜壁熔池影响不明显,两组实验均获得了熔层高度较为均匀的直壁墙。对熔层组织分析可知,二次重熔区组织较为粗大,非搭接区组织由较多的树枝晶组成,二者显微硬度波动值约为90HV0.5,熔层组织整体较为均匀、致密。  相似文献   

15.
为了改进TC4 钛合金的耐磨性能,开发具有热应力缓和功能的梯度涂层,在对梯度涂层优化设计的基础上,采用激光熔覆的方法在TC4 钛合金的表面上制备耐磨钛基功能梯度(Ti-FGM)复合涂层,观察了微观组织,测量了Ti-FGM 涂层和基材在大气环境室温下的摩擦磨损性能和显微硬度。结果表明:原位自生的增强相TiC 颗粒均匀分布在梯度功能耐磨熔覆层中,微观组织沿熔覆方向呈现粗大树枝晶到颗粒状晶体的变化。复合涂层硬度呈现梯度上升趋势且涂层顶部表现出较优异的耐磨性能。  相似文献   

16.
通过对300M钢表面激光熔覆316L不锈钢修复的实验研究,探究激光熔覆修复层的组织及性能,本文在前期实验的基础上,选用316L不锈钢粉末作为熔覆材料,开展变功率激光熔覆对比实验研究。采用金相分析、EDS分析、XRD分析、电化学分析的方法,研究了不同激光功率对熔覆层宏/微观组织、显微硬度和耐蚀性能的影响。结果表明:当激光功率为15 kW时,在300M钢基体上熔覆得到质量最优的316L不锈钢熔覆层;熔覆层与基体呈冶金结合,底部为平面晶组织,中下部是胞状晶/柱状晶,中上部是树枝晶/等轴晶,表层主要是等轴晶组织;激光功率为15 kW时,熔覆层硬度为基体硬度的25~3倍,更加适合具有摩擦及冲击的实际工况,且熔覆层腐蚀电位最低,为-46265mV,自腐蚀电流最小,为363×10-3mA,因而其耐蚀性能最好;不同激光功率熔覆层的阻抗大小排序为:15 kW>20 kW>10 kW。  相似文献   

17.
激光熔覆原位生成TiC-ZrC颗粒增强镍基复合涂层   总被引:7,自引:0,他引:7  
采用预涂粉末激光熔覆技术,在45#钢表面制备出原位牛成TiC-ZrC颗粒增强的镍基复合涂层.使用扫描电镜(SEM),EDS能谱和X射线衍射(XRD)对熔覆层的显微组织和物相构成进行了分析,并对熔覆层进行了硬度、摩擦性能测试.结果表明,在适当的工艺条件下,原位生成TiC-ZrC颗粒增强镍基复合涂层形貌良好,涂层与基材呈冶金结合.熔覆层底部组织为定向生长的γ(NiFe)树枝晶,熔覆层中上部组织为先共晶析出的TiC-ZrC颗粒相和Cr3C2条状相均匀分布于γ(NiFe)树枝晶基体中.熔覆层具有高的硬度(平均硬度HV0.31300)和良好的耐磨性,与纯Ni60熔覆层相比,其磨损失重仅为纯Ni60熔覆层的1/4.熔覆层硬度和耐磨性的提高归因于大量TiC-ZrC复合颗粒的形成及其在涂层中的均匀弥散分布.  相似文献   

18.
为了提高材料表面强度和硬度,在材料的表面采用激光熔覆技术熔覆合金涂层以提高其表面性能。相同的激光功率下采用不同的激光扫描速率在材料表面激光熔覆制备镍基(Ni60)复合涂层,取得了在基材表面获得理想熔覆层的工艺参量,并对熔覆层的性能进行了检测。结果表明,随着激光扫描速率的增加,表面粗糙度变大,熔覆层的宽度、高度、基材的熔化深度都有一定程度的降低,裂纹出现增大趋势,熔覆层显微硬度高出基材显微硬度约500HV,激光熔覆技术在一定范围内可以实现对基材的表面硬化。该结果为材料表面强化的研究提供了参考。  相似文献   

19.
原位生成NbC颗粒增强镍基激光熔覆层   总被引:9,自引:2,他引:9  
激光熔覆技术是金属材料表面强化和改性的有效方法之一。利用该技术,在A3钢表面激光熔覆预置涂层,成功制备出了原位生成NbC颗粒增强的镍基复合涂层,并进行了硬度、摩擦性能测试,X射线衍射(XRD)和显微组织分析。扫描电镜(SEM)、能谱分析(EDS)和X射线衍射分析结果表明,原位生成NbC颗粒增强的镍基复合涂层与基材呈现良好的冶金结合,熔覆层的组织为先共晶析出的树枝晶(Cr,Fe碳化物相)和原位生成的NbC颗粒相均匀分布在γ(Ni Fe)基体中。硬度测试和摩擦磨损实验表明,激光熔覆原位生成NbC颗粒增强镍基复合涂层平均硬度高达HV0.31200,耐磨性是纯Ni60激光熔覆层的2.5倍。分析认为,其硬度和耐磨性提高的原因在于涂层中形成了大量的、原位生长的NbC颗粒增强相,且均匀分布于基体中。  相似文献   

20.
为了获得高强度、高韧性、耐蚀性好的铁基合金涂层,在Q235基体上激光熔覆了含微量硼元素的低碳、低合金马氏体/铁素体双相不锈钢(M/Fss)合金粉末。研究结果表明,所制备的激光熔覆层表面具有金属光泽,内部无夹杂、气孔等缺陷。熔覆层由马氏体、铁素体、主要沿枝晶间呈均匀不连续分布的硼碳化物M(B,C)和少量在枝晶内析出的M23(B,C)6组成(M为Fe、Cr等)。熔覆层力学性能优异,平均显微硬度为431.9HV,抗拉强度为1352MPa,延伸率为12.3%,且耐腐蚀性能优于1Cr13马氏体不锈钢。这一新型的M/Fss涂层可广泛应用于同时对力学性能和耐蚀性能要求高的工作环境下的铁基材料表面改性或再制造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号