首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
This paper studies the problem of fault estimation (FE) and the active fault tolerant control (FTC) for Takagi–Sugeno (T-S) fuzzy systems with interval time-varying delay and norm-bounded external disturbance. Based on the fast adaptive fault estimation (FAFE) algorithm, our attention focuses on designing an adaptive observer-based controller to guarantee the filtering error system to be asymptotically stable and satisfy theH performance index. By constructing a new Lyapunov–Krasovskii functional including the information of the lower and upper delay bounds, the sufficient delay-dependent conditions have been established to guarantee the existence of adaptive observer-based controller in terms of linear matrix inequalities (LMIs). Compared with the constant delay and time-varying delay, the interval time-varying delay is the less conservative form. Furthermore, we make full use of the information of the delay and no terms are ignored when the stability of the system is analysed. In addition, the results for the systems with time-varying structured uncertainties are established. The results of the active FTC are showed in terms of LMIs. Finally, two examples are given to verify the effectiveness of the proposed method.  相似文献   

2.
This paper considers the problem of delay‐dependent adaptive reliable H controller design against actuator faults for linear time‐varying delay systems. Based on the online estimation of eventual faults, the parameters of adaptive reliable H controller are updating automatically to compensate the fault effects on the system. A new delay‐dependent reliable H controller is established using a linear matrix inequality technique and an adaptive method, which guarantees the stability and adaptive H performance of closed‐loop systems in normal and faulty cases. A numerical example and its simulation results illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This article studies the problem of designing adaptive fault-tolerant H tracking controllers for a class of aircraft flight systems against general actuator faults and bounded perturbations. A robust adaptive state-feedback controller is constructed by a stabilising controller gain and an adaptive control gain function. Using mode-dependent Lyapunov functions, linear matrix inequality-based conditions are developed to find the controller gain such that disturbance attenuation performance is optimised. Adaptive control schemes are proposed to estimate the unknown controller parameters on-line for unparametrisable stuck faults and perturbation compensations. Based on Lyapunov stability theory, it is shown that the resulting closed-loop systems can guarantee asymptotic tracking with H performances in the presence of faults on actuators and perturbations. An application to a decoupled linearised dynamic aircraft system and its simulation results are given.  相似文献   

4.
In order to suppress traffic congestion and reduce traffic accidents, a cooperative driving systems with time‐varying delay and nonlinearity under uncertain external disturbances in a variable speed‐limited area is proposed from a cyber‐physical perspective. Robust stabilization of the cooperative driving system is investigated by using Lyapunov‐Krasovskii functional stability theory. Robust H control is designed to guarantee that the proposed system is robustly stable. Meanwhile, sufficient conditions for the state feedback controller are proposed to attenuate the external disturbances on the basis of linear matrix inequality. Finally, some useful results are obtained from the comparisons between without control scheme, existing ACC (adaptive cruise control) scheme, and the proposed control scheme, which could suppress traffic congestion and reduce traffic accidents.  相似文献   

5.
The stability and trajectory tracking control problem of passive teleoperation systems with the presence of the symmetrical and unsymmetrical time-varying communication delay is addressed in this paper. The proposed teleoperator is designed by coupling local and remote sites by delaying position signals of the master and slave manipulator. The design also comprises local proportional and derivative signals with nonlinear adaptive terms to cope with parametric uncertainty associated with the master and slave dynamics. The Lyapunov–Krasovskii function is employed to establish stability conditions for the closed-loop teleoperators under both symmetrical and unsymmetrical time-varying communication delay. These delay-dependent conditions allow the designer to estimate the control gains a priori in order to achieve asymptotic property of the position, velocity and synchronisation errors of the master and slave systems. Finally, simulation results along with comparative studies are presented to illustrate the effectiveness of the proposed method.  相似文献   

6.
The exponential string stability for a class of nonlinear interconnected large-scale systems with time-varying delay is analysed by using the box theory and constructing a vector Lyapunov function. Under the assumption that the time delay is bounded and continuous, a criterion for exponential string stability of the systems is obtained by analysing the stability of differential inequalities with time-varying delay. The large-scale system is exponential string stable when the conditions associating with the coefficient matrices of the system and the solutions of the Lyapunov equations, interconnected with the system, are satisfied. Since it is independent of the delays and simplifies the calculation, the criterion is easy to apply.  相似文献   

7.
In this article, we are interested in analysing the stability of systems that incorporate time‐varying delays in their dynamic. The Lyapunov‐Krasovskii approach is definitely the most popular method to address this issue and many results have proposed new functionals and enhanced techniques for deriving less conservative stability conditions. In the present work, we propose an original approach: the quadratic separation. To this end, the delay operator properties are exploited to provide delay range stability conditions. In particular, L2‐norm of delay‐dependent operators are computed so as to reduce the conservatism of the approach. Moreover, the main result is able to assess the stability of non‐small delay systems, i.e, it can detect a stability interval for systems that are unstable without any delay. Several examples illustrate the benefit of our methodology.  相似文献   

8.
In this paper the problem of non‐fragile adaptive sliding mode observer design is addressed for a class of nonlinear fractional‐order time‐delay systems with uncertainties, external disturbance, exogenous noise, and input nonlinearity. An H observer‐based adaptive sliding mode control considering the non‐fragility of the observer is proposed for this system. The sufficient asymptotic stability conditions are derived in the form of linear matrix inequalities. It is proven that the sliding surface is reachable in finite time. An illustrative example is provided which corroborates the effectiveness of the theoretical results.  相似文献   

9.

This paper is concerned with a class of neutral type recurrent neural networks with time-varying delays, distributed delay and D operator on time–space scales which unify the continuous-time and the discrete-time recurrent neural networks under the same framework. Some sufficient conditions are given for the existence and the global exponential stability of the pseudo almost periodic solution by using inequality analysis techniques on time scales, fixed point theorem and the theory of calculus on time scales. An example is given to show the effectiveness of the derived results via computer simulations.

  相似文献   

10.

The stability problem of fuzzy large-scale systems with time delays in interconnections is considered in this paper. The fuzzy large-scale system consists of J interconnected subsystems, which are represented by Takagi-Sugeno (T-S) fuzzy models. The stability conditions are derived using the Lyapunov-Krasovskii functional approach. This condition is independent of time delay and does not need the solution of a Lyapunov equation or Riccati equation. A stabilization approach for the delayed fuzzy large-scale systems through fuzzy state feedback-based controller is also presented in this paper. Finally, an example is given to demonstrate the result.  相似文献   

11.
This paper investigates the robust H control problem for continuous‐time piecewise time‐delay systems by using piecewise continuous Lyapunov function. The uncertainties of the systems under consideration are expressed in a linear fractional form. A strict linear matrix inequality approach is developed to obtain delay‐dependent asymptotic stability conditions and H performance. The H controller design problem is solved by exploiting the cone complementarity linearization (CCL) method. Finally an example is given to illustrate the application of the proposed approach. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

12.
This paper addresses the adaptive H∞ control problem for a class of nonlinear Hamiltonian systems with time delay and parametric uncertainties. The uncertainties under consideration are some small parameter perturbations involved in the structure of the Hamiltonian system. Both delay-independent and delay-dependent criteria are established based on the dissipative structural properties of the Hamiltonian systems and the Lyapunov-Krasovskii functional approach. In order to construct the adaptive H∞controller, the situation that the parameter perturbation is inexistent in the system is also studied and the controller is designed.The adaptive H∞ control problem is solved under some sufficient conditions which ensure the asymptotic stability and the L2 gain performance of the resulted closed-loop system. Numerical example is given to illustrate the applicability of the theoretical results.  相似文献   

13.
In this paper, we study robustness of the strong delay‐independent stability of linear time‐delay systems under multi‐perturbation and affine perturbation of coefficient matrices via the concept of strong delayindependent stability radius (shortly, strong stability radius). We prove that for class of positive time‐delay systems, complex and real strong stability radii of positive linear time‐delay systems under multi‐perturbations (or affine perturbations) coincide and they are computed via simple formulae. Apart from that, we derive solution of a global optimization problem associated with the problem of computing of the strong stability radii of a positive linear time‐delay system. An example is given to illustrate the obtained results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
This paper addresses the problem of stability for linear systems with time-varying delay. A novel augmented Lyapunov–Krasovskii functional is constructed by using the idea of optimally dividing the delay interval [0,τ(t)] into some variable sub-intervals and line integral technology. Using the novel augmented functional, the new delay-dependent stability criteria are proposed for linear systems with time-varying delay. The gain is that this stability criterion can lead to much less conservative stability results compared to other methods for linear systems with delay. Two numerical examples are provided to verify the effectiveness of the proposed criteria.  相似文献   

15.
讨论了一类具有Markov跳跃参数的不确定混合线性时滞系统的鲁棒稳定性问题.分别给出了非匹配条件下不确定部分范数上界已知时使混合线性系统以概率1渐近稳定的充分条件,和匹配条件下不确定部分范数上界未知时同样可以实现混合系统以概率1渐近稳定的鲁棒自适应控制设计方案.文章研究结果表明,此控制方案对混合线性时滞系统的不确定部分是有效的.  相似文献   

16.
In this paper, we investigate a class of linear parameter-varying discrete time-delay (LPVDTD) systems where the state-space matrices depend on time-varying parameters and the delay is unknown but bounded. We treat both notions of quadratic stability based on a single quadratic Lyapunov function and affine quadratic stability using parameter-dependent Lyapunov functions. In both cases, we develop LMI-based results of stability testing for time-delay as well as delayless discrete-time systems. Then, we design state-feedback controllers which guarantee quadratic stability and an induced l 2-norm bound. For the case of dynamic output feedback control, we use a parameter-independent quadratic Lyapunov-Krasovskii function to develop LMI-based solvability conditions which are evaluated at the extreme points of the admissible parameter set. Throughout the paper, complementary results for linear parameter-varying discrete (LPVD) systems without delay are presented.  相似文献   

17.
This paper investigates the stability and H control problem for a class of nonlinear time‐delay systems with a nonsingular Jacobian matrix, and provides a number of new results regarding stability analysis and control design. Firstly, an equivalent form is obtained for this class of systems by means of coordinate transformation and/or orthogonal decomposition of vector fields. Then, based on the equivalent form and free‐weighting matrix method, several sufficient conditions, in terms of nonlinear matrix inequalities, are derived for the stability analysis of the time‐delay systems by constructing suitable Lyapunov functionals. Finally, we use the equivalent form and the obtained stability results to investigate the H control problem, and present a control design procedure for this class of time‐delay systems. A study of illustrative examples shows that the results obtained in this paper have less conservatism, and work very well in the stability analysis and control design of some nonlinear time‐delay systems. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

18.
In this paper, the problems of delay‐dependent robust stability analysis, robust stabilization and robust H control are investigated for uncertain discrete‐time singular systems with state delay. First, by making use of the delay partitioning technique, a new delay‐dependent criterion is given to ensure the nominal system to be regular, causal and stable. This new criterion is further extended to singular systems with both delay and parameter uncertainties. Then, without the assumption that the considered systems being regular and causal, robust controllers are designed for discrete‐time singular time‐delay systems such that the closed‐loop systems have the characteristics of regularity, causality and asymptotic stability. Moreover, the problem of robust H control is solved following a similar line. The obtained results are dependent not only on the delay, but also on the partitioning size and the conservatism is non‐increasing with reducing partitioning size. These results are shown, via extensive numerical examples, to be much less conservative than the existing results in the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Emilia Fridman  Uri Shaked  Kun Liu   《Automatica》2009,45(11):2723-2727
Two recent Lyapunov-based methods have significantly improved the stability analysis of time-delay systems: the delay-fractioning approach of Gouaisbaut and Peaucelle (2006) for systems with constant delays and the convex analysis of systems with time-varying delays of Park and Ko (2007). In this paper we develop a convex optimization approach to stability analysis of linear systems with interval time-varying delay by using the delay partitioning-based Lyapunov–Krasovskii Functionals (LKFs). Novel LKFs are introduced with matrices that depend on the time delays. These functionals allow the derivation of stability conditions that depend on both the upper and lower bounds on delay derivatives.  相似文献   

20.
This paper considers the problems of stability analysis and H controller design of time-delay switched systems with average dwell time. In order to obtain less conservative results than what is seen in the literature, a tighter bound for the state delay term is estimated. Based on the scaled small gain theorem and the model transformation method, an improved exponential stability criterion for time-delay switched systems with average dwell time is formulated in the form of convex matrix inequalities. The aim of the proposed approach is to reduce the minimal average dwell time of the systems, which is made possible by a new Lyapunov–Krasovskii functional combined with the scaled small gain theorem. It is shown that this approach is able to tolerate a smaller dwell time or a larger admissible delay bound for the given conditions than most of the approaches seen in the literature. Moreover, the exponential H controller can be constructed by solving a set of conditions, which is developed on the basis of the exponential stability criterion. Simulation examples illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号