首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
通过一步法模塑发泡工艺,将聚六亚甲基胍盐酸盐(PHMG)键合到聚氨酯(PU)分子链上,制备了抗菌聚氨酯软质泡沫。通过红外光谱表征抗菌聚氨酯的化学结构,并用紫外光谱测试聚氨酯中PHMG的键合率,同时测试了聚氨酯的泡孔结构、力学性能、抗菌性能和防霉性能。结果表明,当PHMG的质量分数为0.5%时,聚氨酯中PHMG的键合率达到76.0%,对大肠杆菌和金黄色葡萄球菌的抑菌率均超过99.5%,其防霉等级为0级。  相似文献   

2.
通过化学反应将抗菌剂聚六亚甲基盐酸胍(PHMG)键合到聚对苯二甲酸乙二醇酯(PET)基体上,制得抗菌剂质量分数为15%的PET抗菌母料(PET-g-PHMG),PHMG与PET的键合效率达93.7%.透射电子显微镜(TEM)结果表明,化学键的键合作用提高了PHMG与PET的相容性,使得极性的PHMG以纳米尺寸均匀分布在PET-g-PHMG中.在PET基体中添加少量PET-g-PHMG,可制成不同抗菌剂含量的PET样品,抗菌母料PET-g-PHMG的添加可抑制PET基体的降解,提高抗菌PET样品的特性黏度.所得抗菌PET样品对大肠杆菌和金黄色葡萄球菌的抑菌率均在99%以上,即使反复水洗,抗菌性能也无明显降低.该抗菌PET样品具有良好的可纺性,通过熔融纺丝可以制成抗菌PET纤维,其抗菌性能具有耐水洗性,抗菌动力学测试结果表明,该抗菌PET样品对革兰氏阴性和阳性细菌还具有较快速的杀灭作用.  相似文献   

3.
在Haake转矩流变仪中,将盐酸胍与己二胺的低聚物(PHMG)与末端带环氧基的遥爪型聚苯乙烯(PS)进行熔融反应,得到具有抗菌性能的聚苯乙烯(PS-PHMG)。红外(FT-IR)光谱证明胍盐低聚物是以化学键的形式键合到PS分子链上的。分别用扩散法和振荡瓶法测试了抗菌聚苯乙烯对大肠杆菌和金黄色葡萄球菌的抗菌性能。扩散法实验表明,经提纯后的PS-PHMG不存在胍盐低聚物的溶出,但对大肠杆菌和金黄色葡萄球菌均有明显的抑菌圈。振荡瓶法结果表明:当PS中w(PS-PHMG)=0.2%(即w(PHMG)=0.069%)时,与大肠杆菌接触30 mi m后,抑菌率达100%;当w(PS-PHMG)=0.1%(即w(PHMG)=0.035%)时,30 min内对金黄色葡萄球菌的抑菌率也能够达到100%,具有较好的抗菌速效性,杀灭细菌的时间小于30 min。  相似文献   

4.
将自制的胍盐低聚物(PHMG)分别以熔融共混和键合反应的方式引入到聚丙烯(PP)基体中.用透射电子显微镜(TEM)观察了两种不同引入方式下 PHMG 在 PP 基体中的分布,并用热重分析法(TGA)研究了它们的热分解特性.研究表明:PHMG 与 PP 的熔融共混由于两者之间极性相差较大,PHMG 倾向于以团簇的形式分布在 PP 基体中,分布不均匀,其共混物倾向于按PHMG、PP 各自的规律降解;但 PHMG 与 PP 进行键合后,PHMG 则均匀分布在 PP 基体中,PHMG 倾向于与 PP 同时降解.  相似文献   

5.
在Hakke转矩流变仪中,将聚丙烯蜡(PPw)接枝马来酸酐(PPW—g—MAH)与聚六亚甲基胍盐酸盐(PHMG)熔融反应,得到具有抗茵性能的聚丙烯蜡(PPW—g—PHMG)。透射电镜显示PHMG在PPw一舻PHMG上呈纳米尺度均匀分布。将聚丙烯与PPW—g—PHMG混合,混和物(PP/PPw—g—PHMG)的抑茵圈法和贴膜法抗茵性能测试结果显示:样品对大肠杆菌具有优异的抗菌性能。经过提纯后,PP/PPw—g—PHMG没有出现PHMG的溶出,具有非溶出性的、持久的抗茵功能。  相似文献   

6.
以乙二醇二缩水甘油醚(GDE)为偶联剂,将胍盐低聚物(PHMG)接枝到淀粉上,形成淀粉接枝物(Starch-g-PHMG)。然后,将一定比例的Starch-g-PHMG与淀粉-丙烯酸接枝共聚物共混,制备了抗菌水凝胶敷料(AHD)。通过红外光谱(FT-IR)、元素分析确定了Starch-g-PHMG的分子结构;通过吸液测试、抗菌测试表征了AHD的理化性能。结果表明:在反应温度为60°C,反应时间为3h,w(NaOH)=0.4%时,Starch-g-PHMG中PHMG的接枝效率最高,可达37.5%;AHD的吸液率随着Starch-g-PHMG含量的增加而减少;当w(PHMG)0.33%时,AHD对金黄色葡萄球菌与大肠杆菌的抑菌率可以达到100%。  相似文献   

7.
以甲基丙烯酸缩水甘油酯(GMA)修饰聚六亚甲基胍盐酸盐(PHMG),制备端基具有甲基丙烯酸酯基的抗菌改性剂PHMG-GMA。将PHMG-GMA与树脂双酚A-甲基丙烯酸缩水甘油酯(Bis-GMA)、稀释剂二甲基丙烯酸二缩三乙二醇酯(TEGDMA)、填料纳米SiO2、光引发剂樟脑醌(CQ)混合均匀,经紫外灯固化后得到了具有抗菌性能的复合牙科材料。测试了该材料的抗菌性能,研究了SiO2、PHMG-GMA的加入对紫外透过率的影响。结果表明:随着SiO2含量的增加,材料的紫外透过率下降。当PHMG-GMA的质量分数为1.0%时,复合牙科材料对变形链球菌的抑菌率达到99.99%。  相似文献   

8.
首先以丙烯酸(AA)和壳聚糖(CS)为单体、N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,通过光聚合法制备了CS/PAA双网络水凝胶,然后将Ag~+以硝酸银的形式分散在水凝胶中并通过紫外光辐照获得CS/PAA/纳米银复合水凝胶,并对复合水凝胶的抗菌性能进行研究。采用红外光谱对其结构进行表征,研究单体含量对水凝胶力学性能以及溶胀行为的影响。结果表明,当丙烯酸质量分数为20%,壳聚糖质量分数为5%的情况下,水凝胶的拉伸性能最优。此外,纳米银的引入有效提高了水凝胶的抗菌性能。  相似文献   

9.
抗菌淀粉-聚乙烯醇水凝胶的制备及性能   总被引:3,自引:0,他引:3  
以环氧氯丙烷为键合剂将胍盐低聚物(PHMG)接枝到淀粉分子上,设计了正交试验优化接枝反应条件。将产物添加到淀粉和聚乙烯醇(PVA)水溶液中,采用化学交联法合成了具有抗菌性能的淀粉-聚乙烯醇(S-PVA)水凝胶,测试了水凝胶的溶胀率、脱水率以及抗菌性能。结果表明:当反应温度为40°C、时间为0.5 h、pH为9时,PHM...  相似文献   

10.
采用100%可再生聚三亚甲基醚(PO3G)和聚乙二醇等与1,6-己基二异氰酸酯(HDI)反应合成了不同PO3G含量的聚氨酯(PU)水凝胶。利用傅里叶转变红外光谱(FT-IR)、差示扫描量热(DSC)、动态热机械分析(DMA)、流变仪、扫描电镜(SEM)和力学性能测试等手段研究了PO3G含量对PU水凝胶结构与性能的影响。结果表明:随着PO3G质量分数的降低,PU的玻璃化转变温度升高,PU软段的结晶能力提高,PU的吸水溶胀度增加,初级溶胀行为由Fickian扩散转向non-Fickian扩散,PU水凝胶的储能模量和损耗模量均降低。随着PO3G质量分数增加,PU及其水凝胶的拉伸强度均显著增加。  相似文献   

11.
Antimicrobial polyamide (PA) received much attention for the demand of packaging and biomedical fields. In this paper, an antimicrobial PA6 membrane was prepared via a surface chemical reaction. A highly effective antibacterial component (PHMG‐E) with terminal epoxy group was firstly synthesized via a reaction between polyhexamethylene guanidine hydrochloride (PHMG) and ethylene glycol diglycidyl ether (EGDE). Then, PHMG‐E was bonded on the surface of PA6 membrane with secondary amine reduced by borane‐tetrahydrofuran (BH3‐THF). The antimicrobial rates of surface‐modified PA6 membrane (PA6‐PHMG) against Escherichia coli and Staphylococcus aureus were both higher than 99.99%, and the PHMG was non‐leaching due to the chemical bonding. The hydrophilicity of antibacterial PA6 membrane was also significantly improved and the mechanical performance became better.  相似文献   

12.
《先进技术聚合物》2018,29(2):843-851
The mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers reinforced rigid polyurethane (PU) composites were studied, and the effects of the fiber surface treatment and the mass fraction were discussed. Chromic acid was used to treat the UHMWPE fibers, and polyurethane composites were prepared with 0.1 to 0.6 wt% as‐received and treated UHMWPE fibers. Attenuated total reflection Fourier transform infrared demonstrated that oxygen‐containing functional groups were efficiently grafted to the fiber surface. The mechanical performance tests of the UHMWPE fibers/PU composites were conducted, and the results revealed that the treated UHMWPE fibers/PU composites had better tensile, compression, and bending properties than as‐received UHMWPE fibers/PU composites. Thermal gravimetric analyzer showed that the thermal stability of the treated fiber composites were improved. The interface bonding of PU composites were investigated by scanning electron microscopy and dynamic mechanical analysis, and the results indicated that the surface modification of UHMWPE fiber could improve the interaction between fiber and PU, which played a positive role in mechanical properties of composites.  相似文献   

13.
Silicone-modified graphene was successfully synthesized by treating graphene oxide with 3-aminopropyltriethoxysilane (AMEO) and then reduced by hydrazine hydrate. Subsequently, the AMEO-functionalized graphene was incorporated into polyurethane (PU) matrix to prepare AMEO-functionalized graphene/PU nanocomposite coatings. The functionalized graphene could disperse homogenously by means of a covalent connection with PU. AMEO-functionalized graphene (AFG)-reinforced PU nanocomposite coatings showed more excellent mechanical and thermal properties than those of pure PU. A 227 % increase in tensile strength and a 71.7 % improvement of elongation at break were obtained by addition 0.2 wt% of AFG. Meanwhile, thermogravimetric analysis reveals that thermal degradation temperature was enhanced almost 50 °C higher than that of neat PU, and differential scanning calorimetry analysis demonstrates that glass transition temperature decreased by around 9 °C. The thermal conductivity of AFG/PU nanocomposite coatings also increased by 40 % at low AFG loadings of 0.2 wt%.  相似文献   

14.
Aliphatic polyester-based polyurethane (PU) elastomers with hyperbranched polyester segments were synthesized from polyester diol, hydroxyl-terminated hyperbranched polyester (HB-20), isophorone diisocyanate (PDI) and 1,4-butanediol. The crosslinking density of the PU elastomer was calculated by using Flory-Rehner equation. The degree of hydrogen bonding, the microstructure and the morphologies of these PU materials were characterized by means of FT-IR, WAXD and DSC, respectively. The experimental results showed that the PU elastomers containing small amount of HB-20 exhibited the enhanced hydrogen bonding and mechanical properties. As compared with the comparable PU specimen, the tensile strength of the polyester-based aliphatic PU containing 6 wt% HB-20 increased by 71.2 times, up to 36.1 MPa, and the elongation at break was still as high as 333.1%, resulting from the dual effects of the hydrogen bonding and the crosslinking density in the PU system.  相似文献   

15.
A new route to porous polyimide (PI) films with pore sizes in the nanometer regime was developed. A polyamic acid (PAA)/polyurethane (PU) blend with PU as the disperse phase was first prepared via in situ polymerization of pyromellitic dianhydride and 4,4-oxydianiline in PU solutions. Porous PI films were obtained from PAA/PU films by thermolysis of PU at 360°C and imidization of PAA at 300°C, respectively. Fourier transform infrared spectroscopy and thermal gravimetric analysis were used to detect the imidization and thermolysis processes of PAA/PU blends under thermal treatment. The microporous structure of the PI films was observed by transmission electron microscopy. It was found that the size and content of pores increased with an increase in the PU mass fraction in the PAA/PU blend up to 20%. Because of the existence of nanopores, the dielectric constant of PI films decreased by a wide margin and was less than 2.0 at a PU mass fraction of 20%. It implies that this is an effective means to reduce the dielectric constant of PI, but it also causes the decrease of tensile strength and the rise of water absorption. Translated from Chemistry Journal of Chinese Universities 2006, 27(1): (in Chinese)  相似文献   

16.
采用层层自组装技术与光化学修饰方法相结合在聚氨酯材料表面固定生物多糖衍生物,首先合成具有光反应活性的叠氮壳聚糖,再在聚氨酯基材表面进行叠氮壳聚糖与香菇多糖硫酸酯的层层自组装,然后通过光化学反应对自组装多层膜修饰层进行交联,制备得到生物多糖衍生物层层自组装与光化学表面修饰的聚氨酯材料.通过红外光谱、X射线光电子能谱、水接触角测量仪、抗菌活性测试、溶血试验和血小板黏附测试等方法对被修饰聚氨酯材料的表面性能和生物性能进行了分析,测试结果表明修饰后的聚氨酯材料表面的亲水性和血液相容性得到改善,并且被修饰材料对大肠杆菌具有良好的抑制效果.  相似文献   

17.
李昊  陈广美  陈炜  张明月  许戈文  黄毅萍 《应用化学》2011,28(10):1135-1142
采用丙烯酸酯(AC)对水性聚氨酯(WPU)进行改性,合成了接枝型丙烯酸酯/聚氨酯(PUA)复合乳液。 随着共聚物中丙烯酸酯质量分数的增加,乳液外观由透明变为不透明,乳液粒径随之增大、分布变宽。 TEM显示,PUA乳胶粒子呈现清晰的核壳结构,且形态规整,粒径分布在60~120 nm之间。 FTIR测试表明,随着丙烯酸酯质量分数的增加,聚氨酯(PU)硬段氢键化作用先增强后减弱,硬段的有序度逐渐降低。 DSC分析表明,当AC的质量分数低于75%时,PU、聚丙烯酸酯(PA)两组分相容性较好,只出现一个玻璃化转变温度,并且随着PA质量分数的增加逐渐升高。 PA质量分数的增加,使胶膜的最大热失重速率从363 ℃提高至412 ℃,吸水率从11.3%降低至5.7%,弹性模量从16.4 MPa提高至47.6 MPa,拉伸强度从9.0 MPa提高至23.7 MPa,断裂伸长率从365%提高至408%,同时乳液的粘度下降,干燥时间变短,胶膜的附着力变好。  相似文献   

18.
As biomaterials, it is essential for polyurethane (PU) to have excellent antibacterial activity and biocompatibility at the same time. Herein, quaternary ammonium groups, sulfonic groups, and alkyl groups simultaneously introduced hyperbranched poly(amidoamine) (HPA-QSA) was synthesized, which was further used to blend with PU and prepared as films. HPA-QSA/PU blend films showed strong antibacterial activity to kill more than 99.99% of both Gram-positive and Gram-negative bacteria due to the quaternary ammonium groups and long alkyl groups, as well as good biocompatibility through protein-resistance, cytotoxicity, hemolysis assays under the combined action of cations and anions. Moreover, they exhibited stable antibacterial activity and low cytotoxicity in aquatic solutions. Overall, HPA-QSA/PU films prepared by facile blending process exhibit great promise as low-cost, effective antibacterial, good biocompatible materials, indicating an appealing prospect in biomedical fields.  相似文献   

19.
Fullerenol polyurethane (C60‐PU) and linear polyurethane (linear‐PU) modified phenolic resins were prepared in this study. Phenolic resin/C60‐PU and phenolic resin/linear‐PU blends show good miscibility as a result of the intermolecular hydrogen bonding existing between phenolic resin and PU modifiers. DSC and thermogravimetric analysis methods were used to study the thermal properties of phenolic resin blended with different types of PUs. The intermolecular hydrogen bonding that existed between phenolic resin and C60‐PU was investigated by Fourier transform infrared spectroscopy. The morphology and mechanical properties of phenolic resin/C60‐PU and phenolic resin/linear‐PU blends were also investigated. The char yield of the modified phenolic resins decreased with increasing PU modifier content. Significant improvement in the toughness of the modified phenolic resins was observed. The improvements of impact strength were 27.4% for the phenolic resin/linear‐PU system and 54.3% for the phenolic resin/C60‐PU system, respectively, both with 3 phr linear‐PU and C60‐PU content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2436–2443, 2001  相似文献   

20.
In order to reach an antibacterial, photocatalytic, and hydrophilic coating, commercial grade polyurethane (CPU) resin was modified with silver ion exchanged montmorillonite/TiO2 nanocomposite in various montmorillonite to TiO2 nanoparticle ratios. To characterize the prepared nanocomposites and coatings, X-ray diffraction patterns, FTIR and UV–Vis spectroscopy and SEM images were used. The modified commercial grade polyurethane coatings containing nanocomposites show better properties, including hydrophilicity, degradation of organic pollutants, antibacterial activity and water resistivity, compared to unmodified commercial grade polyurethane coatings. The water droplet contact angle of unmodified CPU coating was 70°, however it decreased to lower than 10° in modified CPU coatings after 24 h LED lamp irradiation. Decolorization efficiency of malachite green dye solution by the use of modified CPU coatings achieved up to 70% after 5 h LED lamp illumination, compared to less than 5% for unmodified CPU coatings. Modified CPU coatings also showed significant water resistivity and antibacterial properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号