首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A numerical solution to the problem of the three‐dimensional fluid flow in a long rotating heterogeneous porous channel is presented. A co‐ordinate transformation technique is employed to obtain accurate solutions over a wide range of porous media Ekman number values and consequent boundary layer thicknesses. Comparisons with an approximate asymptotic solution (for large values of Ekman number) and with theoretical predictions on the validity of Taylor–Proudman theorem in porous media for small values of Ekman number show good qualitative agreement. An evaluation of the boundary layer thickness is presented and a power‐law correlation to Ekman number is shown to well‐represent the results for small values of Ekman number. The different three‐dimensional fluid flow regimes are presented graphically, demonstrating the distinct variation of the flow field over the wide range of Ekman numbers used. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
A thin film of a power–law fluid flowing down a porous inclined plane is considered. It is assumed that the flow through the porous medium is governed by the modified Darcy’s law together with Beavers–Joseph boundary condition for a general power–law fluid. Under the assumption of small permeability relative to the thickness of the overlying fluid layer, the flow is decoupled from the filtration flow through the porous medium and a slip condition at the bottom is used to incorporate the effects of the permeability of the porous substrate. Applying the long-wave theory, a nonlinear evolution equation for the thickness of the film is obtained. A linear stability analysis of the base flow is performed and the critical condition for the onset of instability is obtained. The results show that the substrate porosity in general destabilizes the film flow system and the shear-thinning rheology enhances this destabilizing effect. A weakly nonlinear stability analysis reveals the existence of supercritical stable and subcritical unstable regions in the wave number versus Reynolds number parameter space. The numerical solution of the nonlinear evolution equation in a periodic domain shows that the fully developed nonlinear solutions are either time-dependent modes that oscillate slightly in the amplitude or time independent stable two-dimensional nonlinear waves with large amplitude referred to as ‘permanent waves’. The results show that the shape and the amplitude of the nonlinear waves are strongly influenced by the permeability of the porous medium and the shear-thinning rheology.  相似文献   

3.
The transient flow in the Ekman layer of an elastico-viscous liquid near a flat plate is discussed. Initially the fluid and the plate were rotating together and the plate then suddently starts moving with a uniform velocity in its own plane relative to the rotating frame of reference. It is shown that the ultimate steady state is reached through decay of inertial oscillations whose frequency decreases with increase in the elastic parameter.  相似文献   

4.
Using the perturbation method, the axial laminar flow of Non-Newtonian fluid through an eccentric annulus is studied in the present paper. The relative eccentricity ε is taken as a perturbation parameter, and the first order perturbation solutions of the problem, such as velocity field, limit velocity and pressure gradient, are all obtained.  相似文献   

5.
The prime objective of this article is to study the axisymmetric flow and heat transfer of the Carreau fluid over a radially stretching sheet. The Carreau constitutive model is used to discuss the characteristics of both shear-thinning and shear-thickening fluids. The momentum equations for the two-dimensional flow field are first modeled for the Carreau fluid with the aid of the boundary layer approximations. The essential equations of the problem are reduced to a set of nonlinear ordinary differential equations by using local similarity transformations. Numerical solutions of the governing differential equations are obtained for the velocity and temperature fields by using the fifth-order Runge–Kutta method along with the shooting technique. These solutions are obtained for various values of physical parameters. The results indicate substantial reduction of the flow velocity as well as the thermal boundary layer thickness for the shear-thinning fluid with an increase in the Weissenberg number, and the opposite behavior is noted for the shear-thickening fluid. Numerical results are validated by comparisons with already published results.  相似文献   

6.
Hayat  T.  Hameed  M. I.  Asghar  S.  Siddiqui  A. M. 《Meccanica》2004,39(4):345-355
The exact analytic solutions of two problems of a second order fluid in presence of a uniform transverse magnetic field are investigated. The governing equation is of fourth order ordinary differential equation and is solved using perturbation method. In the first problem we discuss the flow of a second order fluid due to non-coaxial rotations of a porous disk and a fluid at infinity. In second problem the flow of a second order conducting fluid between two infinite plates rotating about the same axis is investigated, with suction or blowing along the axial direction. For second order conducting fluid it is observed that asymptotic solution exists for the velocity both in the case of suction and blowing.  相似文献   

7.
Using the perturbation method, the axial laminar flow of Non-Newtonian fluid through an eccentric annulus is studied in the present paper. The relative eccentricity ε is taken as a perturbation parameter, and the first order perturbation solutions of the problem, such as velocity field, limit velocity and pressure gradient, are all obtained.  相似文献   

8.
This article presents a numerical study on oscillating peristaltic flow of generalized Maxwell fluids through a porous medium. A sinusoidal model is employed for the oscillating flow regime. A modified Darcy-Brinkman model is utilized to simulate the flow of a generalized Maxwell fluid in a homogenous, isotropic porous medium. The governing equations are simplified by assuming long wavelength and low Reynolds number approximations. The numerical and approximate analytical solutions of the problem are obtained by a semi-numerical technique, namely the homotopy perturbation method. The influence of the dominating physical parameters such as fractional Maxwell parameter, relaxation time, amplitude ratio, and permeability parameter on the flow characteristics are depicted graphically. The size of the trapped bolus is slightly enhanced by increasing the magnitude of permeability parameter whereas it is decreased with increasing amplitude ratio. Furthermore, it is shown that in the entire pumping region and the free pumping region, both volumetric flow rate and pressure decrease with increasing relaxation time, whereas in the co-pumping region, the volumetric flow rate is elevated with rising magnitude of relaxation time.  相似文献   

9.
A technique combining the features of parameter differentiation and finite differences is presented to compute the flow of viscoelastic fluids. Two flow problems are considered: (i) three-dimensional flow near a stagnation point and (ii) axisymmetric flow due to stretching of a sheet. Both flows are characterized by a boundary value problem in which the order of the differential equation exceeds the number of boundary conditions. The exact numerical solutions are obtained using the technique described in the paper. Also, the first-order perturbation solutions (in terms of the viscoelastic fluid parameter) are derived. A comparison of the results shows that the perturbation method is inadequate in predicting some of the vital characteristic features of the flows, which can possibly be revealed only by the exact numerical solution.  相似文献   

10.
A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal conductivity of the nanofluid, and such an increment of thermal conductivity can play an important role in improving the heat transfer rate of the base fluid. Further, the dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The present predominately predictive modeling studies the flow of the viscoelastic Oldroyd-B fluid over a rotating disk in the presence of nanoparticles. A progressive amendment in the heat and concentration equations is made by exploiting the Cattaneo-Christov heat and mass flux expressions. The characteristic of the Lorentz force due to the magnetic field applied normal to the disk is studied. The Buongiorno model together with the Cattaneo-Christov theory is implemented in the Oldroyd-B nanofluid flow to investigate the heat and mass transport mechanism. This theory predicts the characteristics of the fluid thermal and solutal relaxation time on the boundary layer flow. The von K′arm′an similarity functions are utilized to convert the partial differential equations(PDEs) into ordinary differential equations(ODEs). A homotopic approach for obtaining the analytical solutions to the governing nonlinear problem is carried out. The graphical results are obtained for the velocity field, temperature, and concentration distributions. Comparisons are made for a limiting case between the numerical and analytical solutions, and the results are found in good agreement. The results reveal that the thermal and solutal relaxation time parameters diminish the temperature and concentration distributions, respectively. The axial flow decreases in the downward direction for higher values of the retardation time parameter. The impact of the thermophoresis parameter boosts the temperature distribution.  相似文献   

11.
An exact solution of an oscillatory flow is constructed in a rotating fluid under the influence of an uniform transverse magnetic field. The fluid is considered as second-grade (non-Newtonian). The influence of Hall currents and material parameters of the second-grade fluid is investigated. The hydromagnetic flow is generated in the uniformly rotating fluid bounded between two rigid non-conducting parallel plates by small amplitude oscillations of the upper plate. The exact solutions of the steady and unsteady velocity fields are constructed. It is found that the steady solution depends on the Hall parameter but is independent of the material parameter of the fluid. The unsteady part of the solution depends upon both (Hall and material) parameters. Attention is focused upon the physical nature of the solution, and the structure of the various kinds of boundary layers is examined. Several results of physical interest have been deduced in limiting cases.  相似文献   

12.
Magnetohydrodynamic flow of an electrically conducting power-law fluid in the vicinity of a constantly rotating infinite disk in the presence of a uniform magnetic field is considered. The steady, laminar and axi-symmetric flow is driven solely by the rotating disk, and the incompressible fluid obeys the inelastic Ostwald de Waele power-law model. The three-dimensional boundary layer equations transform exactly into a set of ordinary differential equations in a generalized similarity variable. These ODEs are solved numerically for values of the magnetic parameter m up to 4.0. The effect of the magnetic field is to reduce, and eventually suppress, the radially directed outflow. An accompanying reduction of the axial flow towards the disk is observed, together with a thinning of the boundary layer adjacent to the disk, thereby increasing the torque required to maintain rotation of the disk at the prescribed angular velocity. The influence of the magnetic field is more pronounced for shear-thinning than for shear-thickening fluids.  相似文献   

13.
The flow of viscoelastic fluids through a porous channel with one impermeable wall is computed. The flow is characterized by a boundary value problem in which the order of the differential equation exceeds the number of boundary conditions. Three solutions are developed: (i) an exact numerical solution, (ii) a perturbation solution for small R, the cross-flow Reynold's number and (iii) an asymptotic solution for large R. The results from exact numerical integration reveal that the solutions for a non-Newtonian fluid are possible only up to a critical value of the viscoelastic fluid parameter, which decreases with an increase in R. It is further demonstrated that the perturbation solution gives acceptable results only if the viscoelastic fluid parameter is also small. Two more related problems are considered: fluid dynamics of a long porous slider, and injection of fluid through one side of a long vertical porous channel. For both the problems, exact numerical and other solutions are derived and appropriate conclusions drawn.  相似文献   

14.
The peristaltic flow of a Walter’s B fluid in an endoscope is studied.The problem is modeled in a cylindrical coordinate system.The main theme of the present analysis is to study the endoscopic effects on the peristaltic flow of the Walter’s B fluid.To the best of the authors’ knowledge,no investigation has been made so far in the literatures to study the Walter’s B fluid in an endoscope.Analytical solutions are obtained using the regular perturbation method by taking δ as a perturbation parameter.The appro...  相似文献   

15.
J. C. Umavathi  I. C. Liu 《Meccanica》2013,48(9):2221-2232
The problem of steady, laminar mixed convective flow and heat transfer of an electrically conducting fluid through a vertical channel with heat source or sink is analyzed. The effects of viscous and Ohmic dissipations are included in the energy equation. Both walls are kept either at the same or different temperatures such as isothermal-isothermal, isoflux-isothermal and isothermal-isoflux conditions. Analytical solutions are found using regular perturbation technique and numerical solutions are found using finite difference method. A selected set of graphical results illustrating the effects of various parameters involved in the problem on the flow as well as flow reversal situation and Nusselt numbers are presented and discussed. It is also found that both the analytical and numerical solutions agree very well for small values of the perturbation parameter.  相似文献   

16.
In chemical and oil industry gas/shear-thinning liquid two-phase flows are frequently encountered. In this work, we investigate experimentally the flow characteristics of air/shear-thinning liquid systems in horizontal and slightly inclined smooth pipes. The experiments are performed in a 9-m-long glass pipe using air and three different carboxymethyl cellulose (CMC) solutions as test fluids. Flow pattern maps are built by visual observation using a high-speed camera. The observed flow patterns are stratified, plug, and slug flow. The effects of the pipe inclination and the rheology of the shear-thinning fluid in terms of flow pattern maps are presented. The predicted existence region of the stratified flow regime is compared with the experimental observation showing a good agreement. A mechanistic model valid for air/power-law slug flow is proposed and model predictions are compared to the experimental data showing a good agreement. Slug flow characteristics are investigated by the analysis of the signals of a capacitance probe: slug velocity, slug frequency, and slug lengths are measured. A new correlation for the slug frequency is proposed and the results are promising.  相似文献   

17.
We derive a flat-interface model to describe the flow of two horizontal, stably stratified fluids, where the bottom layer exhibits non-Newtonian rheology. The model takes into account the yield stress and power-law nature of the bottom fluid. In the light of the large viscosity contrast assumed to exist across the fluid interface, and for large pressure drops in the streamwise direction, the possibility for the upper Newtonian layer to display fully developed turbulence must be considered, and is described in our model. We develop a linear-stability analysis to predict the conditions under which the flat-interface state becomes unstable, and pay particular attention to characterizing the influence of the non-Newtonian rheology on the instability. Increasing the yield stress (up to the point where unyielded regions form in the bottom layer) is destabilizing; increasing the flow index, while bringing a broader spectrum of modes into play, is stabilizing. In addition, a second mode of instability is found, which depends on conditions in the bottom layer. For shear-thinning fluids, this second mode becomes more unstable, and yet more bottom-layer modes can become unstable for a suitable reduction in the flow index. One further difference between the Newtonian and non-Newtonian cases is the development of unyielded regions in the bottom layer, as the linear wave on the interface grows in time. These unyielded regions form in the trough of the wave, and can be observed in the linear analysis for a suitable parameter choice.  相似文献   

18.
This work provides an investigation on multiple solutions in gas/shear-thinning fluid inclined stratified pipe flows. Multiple solution operative conditions are studied investigating the effect of the interfacial shear stress modeling and the rheology of the shear-thinning fluid. The modeling of the interfacial shear stress in counter-current has a strong influence of multiple solutions regions. The stability of multiple hold-up solutions is studied considering the structural stability, the interfacial stability, and the minimization of the dissipation approaches. The results of the three different approaches are commented both for concurrent and counter-current flows, giving the same conclusions only for upward inclined flows.  相似文献   

19.
The problem of flow of a viscous fluid in a rotating channel is considered in the region of very small Rossby and Ekman numbers and moderately large Reynolds numbers. Asymptotic expressions with respect to the Ekman number are found for the velocity components and the longitudinal pressure gradient by solving a system of linear differential equations using Fourier series. The stability limits of such flow are predicted. Attention is drawn to a similarity between the velocity profiles of these flows and flows of a magnetic fluid and a fluid executing longitudinal oscillations in a fixed channel.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 11–15, January–February, 1984.  相似文献   

20.
The effect of the Coriolis force on the evolution of a thin film of Newtonian fluid on a rotating disk is investigated. The thin-film approximation is made in which inertia terms in the Navier–Stokes equation are neglected. This requires that the thickness of the thin film be less than the thickness of the Ekman boundary layer in a rotating fluid of the same kinematic viscosity. A new first-order quasi-linear partial differential equation for the thickness of the thin film, which describes viscous, centrifugal and Coriolis-force effects, is derived. It extends an equation due to Emslie et al. [J. Appl. Phys. 29, 858 (1958)] which was obtained neglecting the Coriolis force. The problem is formulated as a Cauchy initial-value problem. As time increases the surface profile flattens and, if the initial profile is sufficiently negative, it develops a breaking wave. Numerical solutions of the new equation, obtained by integrating along its characteristic curves, are compared with analytical solutions of the equation of Emslie et al. to determine the effect of the Coriolis force on the surface flattening, the wave breaking and the streamlines when inertia terms are neglected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号