首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 79 毫秒
1.
簇发振荡是多时间尺度系统复杂动力学行为的典型代表,簇发振荡的动力学机制与分类问题是簇发研究的重要问题之一,但当前学者们所揭示的簇发振荡的结构大多较为简单.研究以非自治离散Duffing系统为例,探讨具有复杂分岔结构的新型簇发振荡模式,并将其分为两大类,一类经由Fold分岔所诱发的对称式簇发,另一类经由延迟倍周期分岔所诱发的非对称式簇发.快子系统的分岔表现为典型的含有两个Fold分岔点的S形不动点曲线,其上、下稳定支可经由倍周期(即Flip)分岔通向混沌.当非自治项(即慢变量)穿越Fold分岔点时,系统的轨线可以向上、下稳定支的各种吸引子(例如,周期轨道和混沌)进行转迁,因此得到了经由Fold分岔所诱发的各种对称式簇发;而当非自治项无法穿越Fold分岔点,但可以穿越Flip分岔点时,系统产生了延迟Flip分岔现象.基于此,得到了经由延迟Flip分岔所诱发的各种非对称簇发.特别地,文中所报道的簇发振荡模式展现出复杂的反向Flip分岔结构.研究结果表明,这与非自治项缓慢地反向穿越快子系统的Flip分岔点有关.研究结果丰富了离散系统簇发的动力学机理和分类.  相似文献   

2.
由于多时间尺度问题在实际工程系统中广泛存在,关于其复杂动力学行为及其产生机制的研究已成为当前国内外的热点课题之一.簇发振荡是多时间尺度系统复杂动力学行为的典型代表,而分岔延迟又是簇发振荡中的常见现象.本文为探讨非线性系统中分岔延迟所引发的簇发振荡的分岔机制,在一个三维混沌系统中引入参数激励,当激励频率远小于系统的固有频率时,系统产生了两时间尺度簇发振荡.将整个激励项看做慢变参数,激励系统转化为广义自治系统也即快子系统,分析快子系统平衡点的稳定性以及分岔条件,并运用快慢分析法和转换相图揭示了簇发振荡的动力学机理.文中考察了4组参数条件下系统的动力学行为,研究发现当慢变激励项周期性地通过分岔点时,系统产生了明显的超临界叉形分岔延迟行为,随着参数激励振幅的增大,分岔延迟的时间也逐渐延长,当这种延迟的动态行为终止于不同的参数区域时,导致系统轨线围绕不同稳定吸引子(平衡点,极限环)运动,从而得到了不同的簇发振荡行为.   相似文献   

3.
张毅  韩修静  毕勤胜 《力学学报》2019,51(1):228-236
簇发振荡是自然界和科学技术中广泛存在的快慢动力学现象,其具有与通常的振荡显著不同的特性.根据不同的动力学机制可将其分为多种模式,例如,点-点型簇发振荡和点-环型簇发振荡等.叉型滞后簇发振荡是由延迟叉型分岔诱发的一类具有简单动力学特性的点-点型簇发振荡.研究以多频参数激励Duffing系统为例,旨在揭示一类与延迟叉型分岔相关的具有复杂动力学特性的簇发振荡,即串联式叉型滞后簇发振荡.考虑了一个参激频率是另一个的整倍数情形,利用频率转换快慢分析法得到了多频参数激励Duffing系统的快子系统和慢变量,分析了快子系统的分岔行为.研究结果表明,快子系统可以产生两个甚至多个叉型分岔点;当慢变量穿越这些叉型分岔点时,形成了两个或多个叉型滞后簇发振荡;这些簇发振荡首尾相接,最终构成了所谓的串联式叉型滞后簇发振荡.此外,分析了参数对串联式叉型滞后簇发振荡的影响.   相似文献   

4.
由多时间尺度耦合效应引起的簇发振荡行为是非线性动力学研究的重要课题之一.本文针对一类参数激励下的三维非线性电机系统(该系统可以描述两种自激同极发电机系统的动力学行为,两种系统在数学上等效),研究了当参数激励频率远小于系统自然频率时的各种复杂簇发振荡行为及其产生机理.通过快慢分析方法, 将参数激励作为慢变参数,得到了非自治系统对应的广义自治系统及快子系统和慢变量,并给出了快子系统的稳定性和分岔条件以及系统关于典型参数的单参数分岔图.借助转换相图与分岔图的叠加, 分析了对称式delayed subHopf/fold cycle簇发振荡的产生机理及其动力学转迁, 即delayed subHopf/fold cycle簇发振荡、焦点/焦点型对称式叉形分岔滞后簇发振荡和焦点/焦点型叉形分岔滞后簇发振荡.研究结果表明, 系统会出现两种不同的分岔滞后形式, 一种是亚临界Hopf分岔滞后,另一种是叉形分岔滞后,而且控制参数显著影响平衡点的稳定性和分岔滞后区间的宽度.同时初始点的选取则会影响系统动力学行为的对称性.本文的研究进一步加深了对由分岔滞后引起的簇发振荡的认识和理解.   相似文献   

5.
通过引入适当的参数值, 得到了两时间尺度下的快慢耦合振子, 分析了耦合系统及子系统的平衡点及其性质, 进而利用微分包含理论, 探讨了非光滑分界面上的奇异性, 指出在适当的参数条件下, 系统轨迹在穿越分界面时会产生由Hopf分岔和Fold分岔组合的非常规分岔. 给出了不同参数条件下的周期簇发行为, 分析了簇发过程的振荡特性, 指出激发态的频率取决于快子系统在非光滑分界面上的Hopf分岔频率, 而慢子系统的固有频率影响了簇发行为的振荡周期, 并进一步揭示了由非光滑分岔引起的不同周期簇发的分岔机制.  相似文献   

6.
由于多时间尺度问题在实际工程系统中广泛存在,关于其复杂动力学行为及其产生机制的研究已成为当前国内外的热点课题之一.簇发振荡是多时间尺度系统复杂动力学行为的典型代表,而分岔延迟又是簇发振荡中的常见现象.本文为探讨非线性系统中分岔延迟所引发的簇发振荡的分岔机制,在一个三维混沌系统中引入参数激励,当激励频率远小于系统的固有频率时,系统产生了两时间尺度簇发振荡.将整个激励项看做慢变参数,激励系统转化为广义自治系统也即快子系统,分析快子系统平衡点的稳定性以及分岔条件,并运用快慢分析法和转换相图揭示了簇发振荡的动力学机理.文中考察了4组参数条件下系统的动力学行为,研究发现当慢变激励项周期性地通过分岔点时,系统产生了明显的超临界叉形分岔延迟行为,随着参数激励振幅的增大,分岔延迟的时间也逐渐延长,当这种延迟的动态行为终止于不同的参数区域时,导致系统轨线围绕不同稳定吸引子(平衡点,极限环)运动,从而得到了不同的簇发振荡行为.  相似文献   

7.
簇发振荡是自然界和科学技术中广泛存在的快慢动力学现象,其具有与通常的振荡显著不同的特性.根据不同的动力学机制可将其分为多种模式,例如,"点–点"型簇发振荡和"点–环"型簇发振荡等.叉型滞后簇发振荡是由延迟叉型分岔诱发的一类具有简单动力学特性的"点–点"型簇发振荡.研究以多频参数激励Duffing系统为例,旨在揭示一类与延迟叉型分岔相关的具有复杂动力学特性的簇发振荡,即串联式叉型滞后簇发振荡.考虑了一个参激频率是另一个的整倍数情形,利用"频率转换快慢分析法"得到了多频参数激励Duffing系统的快子系统和慢变量,分析了快子系统的分岔行为.研究结果表明,快子系统可以产生两个甚至多个叉型分岔点;当慢变量穿越这些叉型分岔点时,形成了两个或多个叉型滞后簇发振荡;这些簇发振荡首尾相接,最终构成了所谓的串联式叉型滞后簇发振荡.此外,分析了参数对串联式叉型滞后簇发振荡的影响.  相似文献   

8.
由多时间尺度耦合效应引起的簇发振荡行为是非线性动力学研究的重要课题之一.本文针对一类参数激励下的三维非线性电机系统(该系统可以描述两种自激同极发电机系统的动力学行为,两种系统在数学上等效),研究了当参数激励频率远小于系统自然频率时的各种复杂簇发振荡行为及其产生机理.通过快慢分析方法, 将参数激励作为慢变参数,得到了非自治系统对应的广义自治系统及快子系统和慢变量,并给出了快子系统的稳定性和分岔条件以及系统关于典型参数的单参数分岔图.借助转换相图与分岔图的叠加, 分析了对称式delayed subHopf/fold cycle簇发振荡的产生机理及其动力学转迁, 即delayed subHopf/fold cycle簇发振荡、焦点/焦点型对称式叉形分岔滞后簇发振荡和焦点/焦点型叉形分岔滞后簇发振荡.研究结果表明, 系统会出现两种不同的分岔滞后形式, 一种是亚临界Hopf分岔滞后,另一种是叉形分岔滞后,而且控制参数显著影响平衡点的稳定性和分岔滞后区间的宽度.同时初始点的选取则会影响系统动力学行为的对称性.本文的研究进一步加深了对由分岔滞后引起的簇发振荡的认识和理解.  相似文献   

9.
实际工程应用中存在着诸如冲击、干摩擦、切换等非光滑因素,以此建立的动力学模型是包含非光滑项的系统. 目前针对非光滑动力系统的研究大多基于单一尺度或者两尺度, 而含有更多尺度的非光滑动力系统可能会存在更复杂的动力学现象. 本论文旨在探讨非光滑动力系统中的多尺度效应及其分岔机制.基于典型的非光滑蔡氏电路, 引入一个与系统固有频率存在量级差的周期变化的激励项, 同时通过选取适当的参数值,建立了一个三时间尺度耦合下的、含有两个分界面的四维分段线性电路系统模型, 研究了该系统存在的簇发振荡行为及其分岔机制. 首先,将对应快尺度与中间尺度的变量合并作为快变量, 将对应慢尺度的变量看作慢变量, 重新划分了快慢子系统,从而将三时间尺度耦合问题转化为两时间尺度耦合问题去分析. 然后根据双参数下的Hopf分岔情况, 对应于慢子流形的不同稳定性,给出了不同参数下系统存在的两种典型的簇发振荡行为. 最后, 基于快慢分析法, 结合转换相图以及慢子流形在非光滑分界面上的非光滑动力学行为的详细讨论, 分析了不同簇发振荡相互转化的分岔机制, 发现了一个新的簇发振荡的演化路径, 即由破坏性的擦边分岔诱导的簇发振荡.   相似文献   

10.
双频1:2激励下修正蔡氏振子两尺度耦合行为   总被引:5,自引:4,他引:1  
夏雨  毕勤胜  罗超  张晓芳 《力学学报》2018,50(2):362-372
不同尺度耦合系统存在的复杂振荡及其分岔机理一直是当前国内外研究的热点课题之一. 目前相关工作大都是针对单频周期激励频域两尺度系统,而对于含有两个或两个以上周期激励系统尺度效应的研究则相对较少. 为深入揭示多频激励系统的不同尺度效应,本文以修正的四维蔡氏电路为例,通过引入两个频率不同的周期电流源,建立了双频1:2周期激励两尺度动力学模型. 当两激励频率之间存在严格共振关系,且周期激励频率远小于系统的固有频率时,可以将两周期激励项转换为单一周期激励项的函数形式. 将该单一周期激励项视为慢变参数,给出了不同激励幅值下快子系统随慢变参数变化的平衡曲线及其分岔行为的演化过程,重点考察了3种较为典型的不同外激励幅值下系统的簇发振荡行为. 结合转换相图,揭示了各种簇发振荡的产生机理. 系统的轨线会随慢变参数的变化,沿相应的稳定平衡曲线运动,而fold分岔会导致轨迹在不同稳定平衡曲线上的跳跃,产生相应的激发态. 激发态可以用从分岔点向相应稳定平衡曲线的暂态过程来近似,其振荡幅值的变化和振荡频率也可用相应平衡点特征值的实部和虚部来描述,并进一步指出随着外激励幅值的改变,导致系统参与簇发振荡的平衡曲线分岔点越多,其相应簇发振荡吸引子的结构也越复杂.   相似文献   

11.
多时间尺度问题具有广泛的工程与科学研究背景,慢变参数则是多时间尺度问题的典型标志之一.然而现有文献所报道的慢变参数问题,其展现出的振荡形式及内部分岔结构,大多较为单一,此外少有文献涉及到混沌激变的现象.本文以含慢变周期激励的达芬映射为例,探讨了一类具有复杂分岔结构的张弛振荡.快子系统的分岔表现为S形不动点曲线,其上、下稳定支可经由倍周期分岔通向混沌.而在一定的参数条件下,存在着导致混沌吸引子突然消失的一对临界参数值.当分岔参数达到此临界值时,混沌吸引子可能与不稳定不动点相接触,也可能与之相距一定距离.对快子系统吸引域分布的模拟,表明存在着导致边界激变(boundary crisis)的临界值,在这些值附近,经由延迟倍周期分岔演化而来的混沌吸引子可与2n(n=0,1,2,…)周期轨道乃至混沌吸引子共存.当慢变量周期地穿过临界点后,双稳态的消失导致原本处于混沌轨道的轨线对称地向此前共存的吸引子转迁,从而使系统出现了不同吸引子之间的滞后行为,由此产生了由边界激变所诱发的多种对称式张弛振荡.本文的结果丰富了对离散系统的多时间尺度动力学机理的认识.  相似文献   

12.
A modified slow-fast analysis method is presented for the periodically excited non-autonomous dynamical system with an order gap between the exciting frequency and the natural frequency. By regarding the exciting term as a slow-varying parameter, a generalized autonomous fast subsystem can be defined, the equilibrium branches as well as the bifurcations of which can be employed to account for the mechanism of the bursting oscillations by combining the transformed phase portrait introduced. As an example, a typical periodically excited Hartley model is used to demonstrate the validness of the method, in which the exciting frequency is far less than the natural frequency. The equilibrium branches and their bifurcations of the fast subsystem with the variation of the slow-varying parameter are presented. Bursting oscillations for two typical cases are considered, which reveals that, fold bifurcation may cause the the trajectory to jump between different equilibrium branches, while Hopf bifurcation may cause the trajectory to oscillate around the stable limit cycle.  相似文献   

13.
簇发振荡普遍存在.探索通向簇发振荡的可能路径是簇发研究的热点问题之一."脉冲式爆炸(pulsed-shaped explosion,PSE)"是一种最近被报道的可以诱发簇发振荡的新机制,其特征为平衡点和极限环表现出了与参数变化相关的脉冲式急剧量变.PSE会导致系统轨线急剧跃迁,从而诱发典型的簇发振荡.然而,目前报道的PSE中仅含有"单向的尖峰",未发现"双向的尖峰",且由其诱发的簇发振荡仅含单向的振荡簇.本文以多频激励Rayleigh系统为例,旨在揭示PSE的不同表现形式以及与此相关的簇发动力学.利用频率转换快慢分析法得到了Rayleigh系统的快子系统和慢变量.针对快子系统的分析表明,PSE表现出了较为复杂的动力学特性,其特征是PSE包含了正负双向两个不同的尖峰,此即所谓的正负双向PSE.其急剧量变行为,导致了系统轨线在单个振荡周期内出现正向和负向的多次跃迁,由此得到了由正负双向PSE所诱发的簇发振荡.根据吸引子类型分别揭示了点--点型和环--环型两类簇发振荡模式的产生机制.本文的研究给出了PSE的不同表现形式,丰富了多时间尺度下的簇发振荡的诱发机制.   相似文献   

14.
本文主要探究了一类含有两个慢变量的双稳态 Duffing 型系统,通过时间历程图、相图、分岔图等对系统进行数值模拟,然后从理论上分析不同参数下系统的动力学机理. 首先,研究发现当振幅参数取值大于 1 时,系统会表现出不动点混沌现象,并进一步解释了产生不动点混沌的机理. 其次, 介绍了参数空间中的簇发振荡现象,即系统穿过鞍结曲面的一侧到达另一侧所发生的行为,这里也称为鞍结簇发振荡. 事实上,当系统穿过鞍结曲面的时候,它的平衡点个数发生了变化. 然后,使用纵向抛物线路径说明了 Fold/Fold 簇发振荡产生的机理,发现无论常系数项和振幅的取值为多少,只要满足一定的关系,总会产生 Fold/Fold 簇发振荡,之后使用线性路径阐明了新增常系数项会使得系统发生簇发振荡的原因. 并且发现路径与鞍结曲面交点的位置会影响簇发振荡的对称性;路径的跨度会影响簇发振荡的大小. 最后,使用多拐折曲线路径讨论当两个激励项存在 $n$ 倍关系时系统产生的现象. 结果表明当 $n=3$ 时,常系数项的变化会使得系统表现出不同重数的 Fold/Fold 簇发振荡,最高可达到三重簇发振荡. 并且发现在理想状况下如果可以找到一条路径可以分割为 $n$ 段,并且每一段都会与鞍结曲面有交点,那么会产生 $n$ 重 Fold/Fold 簇发振荡.  相似文献   

15.
陈娅昵  孟文静  钱有华 《力学学报》2020,52(5):1475-1484
本文主要探究了一类含有两个慢变量的双稳态 Duffing 型系统,通过时间历程图、相图、分岔图等对系统进行数值模拟,然后从理论上分析不同参数下系统的动力学机理. 首先,研究发现当振幅参数取值大于 1 时,系统会表现出不动点混沌现象,并进一步解释了产生不动点混沌的机理. 其次, 介绍了参数空间中的簇发振荡现象,即系统穿过鞍结曲面的一侧到达另一侧所发生的行为,这里也称为鞍结簇发振荡. 事实上,当系统穿过鞍结曲面的时候,它的平衡点个数发生了变化. 然后,使用纵向抛物线路径说明了 Fold/Fold 簇发振荡产生的机理,发现无论常系数项和振幅的取值为多少,只要满足一定的关系,总会产生 Fold/Fold 簇发振荡,之后使用线性路径阐明了新增常系数项会使得系统发生簇发振荡的原因. 并且发现路径与鞍结曲面交点的位置会影响簇发振荡的对称性;路径的跨度会影响簇发振荡的大小. 最后,使用多拐折曲线路径讨论当两个激励项存在 $n$ 倍关系时系统产生的现象. 结果表明当 $n=3$ 时,常系数项的变化会使得系统表现出不同重数的 Fold/Fold 簇发振荡,最高可达到三重簇发振荡. 并且发现在理想状况下如果可以找到一条路径可以分割为 $n$ 段,并且每一段都会与鞍结曲面有交点,那么会产生 $n$ 重 Fold/Fold 簇发振荡.   相似文献   

16.
通过引入子电路模块, 并选取适当的参数及非线性电阻特性, 建立了多时间尺度下具有多平衡态的四维广义哈特利(Hartley) 电路模型. 基于快子系统的多平衡态及其稳定性, 给出了参数空间的分岔集, 得到了不同区域中的动力学特性及其相应的分岔模式和临界条件. 针对两种典型具有不同分岔特征的情形, 分别给出了多平衡态参与下的两种不同的周期簇发振荡行为, 结合快子系统的分岔分析, 揭示了沉寂态和激发态之间相互转化的产生机制, 指出多平衡态不仅会导致多种沉寂态和激发态同时参与同一周期簇发振荡, 也会导致簇发振荡模式的多样性.   相似文献   

17.
In this paper, the dynamical behaviors of a perturbed hyperchaotic system is studied. The fast subsystem is examined using local stability and bifurcations, including simple bifurcation, Hopf bifurcation, and fold bifurcation of limit cycle. The results of these analysis are applied to the perturbed hyperchaotic system, where two types of periodic bursting, i.e., symmetric subHopf/fold-cycle bursting and subHopf/fold-cycle bursting, can be observed. In particular, the symmetric subHopf/fold-cycle bursting is new and has not been reported in previous work. With variation of the parameter, subHopf/fold-cycle bursting with symmetric structure may bifurcate into two coexisted subHopf/fold-cycle bursting symmetric to each other. Moreover, 3-torus and quasi-periodic bursting (2-torus) are presented. The relation among 3-torus, quasi-periodic bursting, and symmetric subHopf/fold-cycle bursting is discussed, which suggests that 3-torus may develop to quasi-periodic bursting, while quasi-periodic bursting may further evolve to symmetric subHopf/fold-cycle bursting.  相似文献   

18.
蔡泽民  毕勤胜 《力学季刊》2019,40(3):478-487
当周期激励频率远小于系统固有频率时,会存在快慢耦合效应,与单项激励不同,参外联合激励不仅会导致快子系统平衡曲线和分岔行为的复杂化,也会产生一些特殊的非线性现象,为此,本文以两耦合Hodgkin-Huxley细胞模型为例,引入周期参外联合激励,探讨在频域不同尺度耦合时该系统的簇发振荡的特点及其分岔机制.通过建立相应的快慢子系统,得到慢变参数变化下的快子系统的各种分岔模式以及相应的分岔行为,结合转换相图,揭示耦合系统随激励幅值变化时的动力学行为及其机理.研究表明,在激励幅值较小时,系统表现为概周期振荡,两频率分别近似于快子系统平衡曲线由Hopf分岔引起的两稳定极限环的振荡频率.概周期解随激励幅值的增加进入簇发振荡,导致这些簇发振荡的主要原因是在慢变参数变化的部分区间内,存在唯一稳定的平衡曲线,使得系统的轨迹逐渐趋向该平衡曲线,产生沉寂态,并随着慢变参数的变化,由分岔进入激发态.同时,快子系统中参与簇发振荡的稳定吸引子随激励幅值的变化也会不同,导致不同形式的簇发振荡.另外,与单项激励下的情形不同,联合激励时快子系统的部分稳定吸引子掩埋在其它稳定吸引子内,从而失去对簇发振荡的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号