首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于日本的获原子幸男大地水准面高截断系数Qn(t)和垂线偏差Cook截断系数qn(t)的递推公式,本文推导了惯用大地水准面高截断系数Qn(ψ0)和垂线偏差截断系数Rn(ψ0)的递推公式,并列出了利用最小平方逼近方法改化Stokes积分核以加速级数收敛的公式和改化后的截断系数。  相似文献   

2.
3.
按克林索求和计算大地水准面差距垂线偏差及重力异常   总被引:1,自引:0,他引:1  
本文采用克林索求和的方法,应用三个重力模型计算了东经80°~120°和北纬20°~40°之间的大地水准面差距、垂线偏差和重力异常。各模型截取到22阶次为止,并且将各模型计算的5°×5°大地水准面差距和垂线偏差平均值进行了比较。另外还对模型计算的平均重力异常与实测的平均重力异常进行了比较。  相似文献   

4.
邢乐林  李建成  刘晓玲 《测绘科学》2006,31(5):48-49,53
研究了利用沿轨大地水准面梯度数据计算海洋垂线偏差的最小二乘法,首先对ENVISAT测高数据进行各项地球物理改正得到近似测高大地水准面,然后计算沿轨大地水准面的梯度,接着用最小二乘法计算格网垂线偏差东西分量和南北分量的平均值。最后,用该方法计算了南中国海区域及其邻近海域(4°N~25°N,104°E~120°E)的5′×5′垂线偏差南北分量和东西分量,其精度优于7″,并与EGM96模型计算的垂线偏差值进行了比较,证明了该方法的有效性。  相似文献   

5.
局部大地水准面精化的实质是精确计算出大地水准面的起伏变化情况。一般情况下,需要密度足够的重力数据,依重力异常密集计算大地水准面差距或高程异常。但是在大陆西部高原山区重力点密度是不够的,无法达到大地水准面精化的目的。本文从理论上证实了用地形和岩石密度数据进行局部大地水准面精化的可行性。  相似文献   

6.
GPS高程测量中大地水准面差距的计算   总被引:5,自引:0,他引:5  
本文介绍了研究大地水准面的三种主要方法,及利用GPS高程测量成果结合地表拟合技术求正高高程应用的情况。  相似文献   

7.
林鸿  欧海平  杨光 《现代测绘》2005,28(5):15-16
阐述广州市似大地水准面精化的目的及意义,明确该项目的总体目标,以及实施的技术方案.  相似文献   

8.
中国海域大地水准面和重力异常的确定   总被引:12,自引:1,他引:12  
从莫洛金斯基(Molodensky)等1960年给出的由垂线偏差计算大地水准面空域积分公式出发,导出了其相应谱域1维严密卷积和2维球面及平面卷积公式。由Topex/Poseidon,ERS 1/2及Geosat/GM,ERM测高资料求解的垂线偏差计算了我国海域及其邻区大地水准面,其中计算格网为2.5′×2.5′。为了检核,将测高垂线偏差由逆维宁 迈尼兹(Vening Meinesz)公式反演重力异常,与海上船测重力值进行了外部检核;同时还利用司托克斯(Stokes)公式,由上述反演的重力异常计算大地水准面高,与莫洛金斯基公式直接解得的相应结果进行比较作为内部检核。前者的中误差为±9mGal(1Gal=1cm/s2),后者为±0.025m。本文在积分计算中充分应用了2维平面坐标形式和1维卷积严格公式,并做了比较和自校核。  相似文献   

9.
10.
11.
本文对惯性测量各项系统误差及异常重力场进行了分析和研究,并在此基础上建立了两种用于惯性重力测量的估算模型;模拟计算的结果表明,所建模型在原理上是可靠的,结果是令人满意的;同时,本文较为详细地分析了各项系统误差对异常重力元素估计精度的影响,对卡尔曼滤波应用中的有关问题进行了讨论。  相似文献   

12.
基于SPOT-5图像的城市水体自动提取模型研究   总被引:6,自引:3,他引:6  
以南京市主城区为对象,研究基于SPOT-5图像的城市地区水体信息的提取方法.分析表明,对SPOT-5的SWIR波段进行简单的阈值处理,可以清晰地将水体与阴影提取出来.在分析水体和阴影光谱特征和空间特征(形状指数等)的基础上,建立了基于SPOT-5图像的城市地区水体的自动提取决策树模型.精度验证表明,该模型的水体提取精度较监督分类的提取精度提高2.5%,尤其在具有许多建筑物阴影的局部区域,本模型的水体提取精度提高11.6%.此外,本模型还具有很好的移植性,只是在阈值大小的确定上会有部分差异.  相似文献   

13.
汤曦 《四川测绘》2000,23(2):58-60
本文介绍了几种纵横断面测设的常用方法及记录方法 ,通过数据传输和数据格式的转换 ,在AutoCADR14环境下 ,利用VB6和AutoLISP语言 ,自动生成断面图 ,形成标准格式的电子文件。  相似文献   

14.
根据多边形的性质与锥的特性,提出了多边表顶点凹凸性的判别准则及其新算法,该算法的时间复杂仅是给定多边形顶点数目的线性函数。  相似文献   

15.
16.
浅谈DEM的边缘精度对土石方工程计算的影响   总被引:4,自引:0,他引:4  
杨正银  袁孝 《四川测绘》2002,25(3):132-133
本文介绍利用数字地面高程模型(Digital Elevation Model,简称DEM)计算土石方的方法,重点分析DEM的边缘精度对其计算结果的影响。  相似文献   

17.
本文从模型误差的理论出发,讨论了模型误差对平差结果及其参数估计性质的影响,提出了当存在模型误差时,采用均方差对平差模型及其结果进行估价更为合理.  相似文献   

18.
The paper presents results of applied medical-geographic mapping work by the Uzbek SSR Academy of Sciences in support of public health studies in Central Asian areas where water supplies are contaminated by runoff from irrigated fields. The final product of the work is a map depicting surface water quality in aggregate terms and according to indices for specific pollutants (for water quality monitoring points), which is described both in terms of its content and methods of data compilation and transformation. Translated by Elliott B. Urdang, Providence, RI 02906 from: Izvestiya vysshikh uchebnykh zavedeniy: Geodeziya i aerofotos “yemka, 1989, No. 2, pp. 166–171.  相似文献   

19.
《测量评论》2013,45(12):352-357
Abstract

Preliminary Note.—The substance of this article was written in 1921 at the request of Lieut-Col. Wolff, who was then in charge of the Levelling Division of the Ordnance Survey and with whom the author collaborated in writing “The Second Geodetic Levelling of England and Wales, 1912–21” under the direction of Sir Charles Close. It was not intended for publication and was not again considered until 1928, when a discussion by correspondence was started by the Surveyor-General of Ceylon on the subject of hill circuits in levelling. In this discussion the survey authorities in Great Britain, Canada, India, and South Africa took part, but the main theme was the accumulation of error due to the large number of sightings necessary in hilly country and the question whether a common formula for such country and for flat country was justifiable. In his contribution Dr. van der Sterr made a brief allusion to the subject of the present paper and Dr. de Graaff Hunter went into details. His contribution and the following remarks therefore have some arguments in common.  相似文献   

20.
《测量评论》2013,45(14):464-472
Abstract

The Mythical Spheroid.—The preceding article dealt with the fact that the spheroid of reference is a myth and that, even if it were not, we could not get hold of it at any given place. In order to apply corrections to observed quantities or, more generally, to operate upon them mathematically, we must make some assumption such as that of the spheroidal level surface. Probably a lot of harm has been done by attaching the notion of too concrete a thing to the spheroid. Disputes and misconceptions have arisen. People talk of“putting the spheroid down at a point” and imagine that the obedient thing is still at their feet when they get to another point, perhaps distant, in their system of triangulation or what not. Actually the spheroid may be disobedient not only as regards the direction of the vertical but also because it is above their heads or below their feet. What happens is that at each point afresh the computer treats the observations as if they were made there on the surface of a spheroid. In the same way, but travelling still farther along the road of hypothesis, he may treat observations for astronomical positions as if the compensation for visible elevations were uniformly distributed as a deficiency of density down to a depth of 122·2 kilometres. That was the depth which happened to give the smallest sum of squares of residuals in a certain restricted area, but nobody imagines that it corresponds with a physical reality, especially the ·2! It was a convenient mathematical instrument which, once the theory was to be given a trial, had to be fashioned out of some assumption or another. All this has little to do with geodetic levelling but is meant to try to banish the spheroid out of the reader's mind or at least to the back of his mind. In what follows we shall be compelled to make a certain amount of use of the family of spheroids but always with the above strictures in view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号