首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
集群磁流变平面抛光加工硬脆材料可以高效率获得纳米/亚纳米级表面粗糙度,其中集群磁流变效应抛光垫对加工表面的作用力(抛光力)是材料去除的关键因素,搭建了集群磁流变平面抛光三向测力平台,对模拟的集群磁流变抛光加工过程抛光力(切向力F_t和法向力F_n)进行了系统试验研究。结果表明,2'单晶硅片试验条件下集群磁流变平面抛光切向力Ft最大达到32.25 N、法向力Fn最大达到62.35 N、F_t/F_n值为0.46~0.77;对抛光力影响最大的工艺参数是磁场强度和加工间隙,其次是羰基铁粉与磨料质量分数、磁流变液流量、抛光盘转速,工件摆幅与速率影响最小。集群磁流变平面抛光力大小以及Ft/Fn值随着工件材料硬度的增大而增大,具有低正压力高剪切力特征,有利于提高硬脆材料的超光滑平坦化抛光加工效果。  相似文献   

2.
为实现磷化铟高质量表面的绿色加工,使用动态磁场集群磁流变抛光对单晶磷化铟进行正交抛光实验,研究各工艺参数(抛光盘转速、工件转速、磁极转速和偏摆速度)对抛光速率及抛光表面粗糙度的影响。利用回归分析法建立反映材料去除率及表面粗糙度与抛光工艺参数关系的回归方程。结果显示:在抛光工艺参数中,工件转速对材料去除率影响最大,偏摆速度影响最小;对表面粗糙度影响最大的是抛光盘转速,磁极转速影响最小;在优化工艺参数(抛光盘转速40 r/min、工件转速500 r/min、磁极转速30 r/min、偏摆速度200 mm/min)下对单晶磷化铟抛光3 h后,表面粗糙度由Ra33 nm降至Ra 0.35 nm,材料去除率为2.5 μm/h,表明采用动态集群磁流变抛光的方法加工单晶磷化铟,可以得到高质量加工表面;建立的材料去除率及表面粗糙度回归模型,拟合优度判定系数分别为0.984 2和0.937,表明利用回归分析法建立的磷化铟磁流变抛光的材料去除率及表面粗糙度回归模型,能够有效地预测磷化铟集群磁流变抛光效果。  相似文献   

3.
基于磁流变效应和集群原理提出集群磁流变效应平面抛光技术,对磁极排布方式、端面形状及其尺寸的磁场特性进行静磁场有限元分析优化,结果表明,选取圆柱平底磁极进行同向规律排布时容易形成由多个独立"微磨头"组成的柔性抛光膜,能实现加工表面与"微磨头"的实际接触面积最大化。通过设置"微磨头"尺寸及数量与工件的接触状态,对K9玻璃、单晶硅和单晶6H-SiC三种硬脆材料基片加工出弧形抛光带,试验验证集群磁流变效应抛光膜的集群特性。对加工表面与抛光盘表面之间的间隙、加工时间、磁感应强度和转速等集群磁流变平面抛光工艺参数进行试验优化,并采取优化工艺对三种硬脆材料进行30 min抛光,K9玻璃表面粗糙度从Ra0.34μm下降到Ra1.4 nm,单晶硅从Ra57.2 nm下降到Ra4 nm,单晶SiC从Ra72.89 nm下降到Ra1.92 nm,均能获得纳米级粗糙度表面。  相似文献   

4.
集群磁流变变间隙动压平坦化加工试验研究   总被引:3,自引:1,他引:2  
为了提高光电晶片集群磁流变平坦化加工效果,提出集群磁流变变间隙动压平坦化加工方法,探究各工艺参数对加工效果的影响规律。以蓝宝石晶片为研究对象开展了集群磁流变变间隙动压平坦化加工和集群磁流变抛光对比试验,通过检测加工表面粗糙度、材料去除率,观测加工表面形貌、集群磁流变抛光垫中磁链串受动态挤压前后形态变化,研究挤压幅值、工件盘转速、挤压频率以及最小加工间隙等工艺参数对加工效果的影响规律。试验结果表明:集群磁流变平坦化加工在施加工件轴向微幅低频振动后,集群磁流变抛光垫中形成的磁链串更粗壮,不但使其沿工件的径向流动实现磨粒动态更新、促使加工界面内有效磨粒数增多,而且在工件与抛光盘之间的加工间隙产生动态抛光压力、使磨粒与加工表面划擦过程柔和微量化,形成了提高材料去除效率、降低加工表面粗糙度的机制。对于2英寸蓝宝石晶电(1英寸=2.54 cm)集群磁流变变间隙动压平坦化加工与集群磁流变抛光加工效果相比,材料去除率提高19.5%,表面粗糙度降低了42.96%,在挤压振动频率1 Hz、最小加工间隙1 mm、挤压幅值0.5 mm、工件盘转速500 r/min的工艺参数下进行抛光可获得表面粗糙度为Ra0.45 nm的超光滑表面,材料去除率达到3.28 nm/min。证明了集群磁流变变间隙动压平坦化加工方法可行有效。  相似文献   

5.
为获得抛光均匀的铝合金阳极氧化膜表面,采用集群磁流变平面抛光技术对铝合金阳极氧化膜进行抛光试验,探讨加工间隙、工件转速、抛光盘转速、偏摆幅度、加工时间等加工参数对其表面粗糙度和材料去除率的影响规律。结果表明:随着加工间隙的增大,工件表面粗糙度先减小后增大,材料去除率则递减;随着工件转速或偏摆幅度的增加,工件的表面粗糙度均先迅速减小后缓慢增大,材料去除率则先增加后减小;随着抛光盘转速的增加,工件的表面粗糙度和材料去除率均先减小后增加;随着加工时间的延长,表面粗糙度迅速减小之后趋于稳定。在文中试验条件下,在加工间隙1. 1 mm、工件转速350 r/min、抛光盘转速60 r/min、偏摆幅度10 mm、加工10 min左右时工件表面粗糙度从原始的332. 9 nm下降至5. 2 nm,达到了镜面效果。  相似文献   

6.
针对传统加工技术存在表面损伤、加工效率低的问题,将极具前景的面接触式超精密磁流变抛光技术应用到3C制造业中。对圆柱型永磁体磁流变抛光头在加工过程中的抛光垫的形貌进行了研究分析,发现圆柱型永磁体磁流变抛光头在加工过程中存在一种"环状效应",利用"环状效应"对圆柱型永磁体磁流变抛光头进行了结构设计,并对其进行了设计理念分析;对圆柱型永磁体抛光头在6061的铝合金工件上进行了单因素抛光实验,通过实验获得了最优参数。研究结果表明:该圆柱型永磁体磁流变抛光头能够实现环状加工区域的高效光滑平坦化加工,工件表面粗糙度达到52 nm,材料去除率达9.1μm/min,大大提高了磁流变抛光的效率,为面形精度在微米级的超光滑平面的制造提供了一种高效的加工方法。  相似文献   

7.
磁流变变间隙动压平坦化加工利用工件的轴向低频振动使磁流变液产生挤压强化效应,可以有效提高加工效果并使光电晶片快速获得纳米级表面粗糙度。通过旋转式测力仪试验研究不同变间隙参数对磁流变变间隙动压平坦化加工过程中抛光正压力的影响规律,结果表明,在工件轴向低频振动作用下,抛光正压力形成脉冲正值和负值周期性的动态变化过程;将工件轴向低频振动过程分解为下压过程与拉升过程,下压速度和拉升速度对动态抛光力有不同的响应特性;随着最小加工间隙的减小抛光正压力会急剧增大;设置最小加工间隙停留时间观察抛光正压力变化,可以发现在工件最小加工间隙停留期间抛光力从峰值逐渐衰减并趋于平稳;挤压振动幅值对抛光正压力影响较小。建立了磁流变变间隙动压平坦化加工材料去除模型,弄清了在动态压力作用下,磨料更新及其附加运动机制,研究了磁流变变间隙动压平坦化加工过程中磨料颗粒对工件表面柔性划擦和微量去除的作用机理,为磁流变变间隙动压平坦化加工的工艺优化提供了理论依据。  相似文献   

8.
磁场分布对多磨头磁流变抛光材料去除的影响   总被引:1,自引:0,他引:1  
为研究磁场分布对材料去除的影响,设计轴向充磁异向排布、轴向充磁同向排布、径向充磁异向排布、径向充磁同向排布4种磁铁充磁和排布方式,利用有限元软件Maxwell仿真不同磁场的磁力线分布及抛光轮表面的磁感应强度分布,并采用数字特斯拉计测量实际磁感应强度。对单晶硅基片进行定点抛光试验,检测抛光斑沿抛光轮轴向的去除轮廓及峰值点的表面形貌。仿真和实际磁感应强度检测结果表明,不同磁场分布方式对抛光区的磁场分布有很大影响,磁铁轴向充磁同向排布与径向充磁异向排布时,具有较高的磁场强度和较好的多磨头效果。定点抛光试验表明,采用轴向充磁同向排布与径向充磁异向排布这两种方式时,能实现多点加工,其中轴向充磁同向排布时加工效率较高;但采用径向充磁同向排布时,由于抛光区磁感应强度较低,磁流变微磨头无法对工件进行有效地抛光。峰值点表面形貌检测结果表明,采用不同磁场分布方式时,对工件表面均是以塑性去除方式去除。研究表明,通过优化磁铁充磁和排布方式,可实现多磨头磁流变抛光的加工原理。  相似文献   

9.
提出了一种光学抛光的新方法——超声波磁流变复合抛光。介绍了该抛光方法的基本原理和实验装置,进行了超声波磁流变复合抛光实验,采用轮廓仪实测了光学玻璃超声波磁流变抛光材料去除轮廓曲线。通过该项工艺实验,研究了五种工艺参数(磁场强度、超声振幅、抛光工具头与工件的间隙、抛光工具头转速、工件转速)对光学玻璃材料去除率的影响。在一定实验条件下,获得的材料去除率为0.139 μm/min,并获得了超声波磁流变复合抛光工艺参数与材料去除率的关系曲线,得出了光学玻璃超声波磁流变复合抛光的材料去除规律。  相似文献   

10.
针对光学玻璃抛光效率和抛光精度不断提高的需求,提出采用磁性复合流体(Magnetic compound fluid,MCF)抛光轮进行抛光加工的方法,并自行研制出相应的抛光试验装置。运用标量磁位法、矢量叠加原理,建立MCF抛光轮外部空间磁场分布的解析表达式,通过对比分析磁铁磁场强度的解析计算结果和实际测量结果,说明解析表达式能较好地反映抛光轮外部空间磁场的分布规律。以Preston方程为依据,分析磁场产生的磁化压力对被加工工件表面材料去除率的影响规律;在自行研制的试验装置上利用磁性复合流体对熔融石英玻璃进行120 min的往复抛光加工,当两个环形磁铁采用NS-SN和NS-NS磁极布置方式时,最大材料去除深度分别为13 m和8 m,而且采用NS-NS磁极布置方式时,在工件中部的材料去除量几乎为零,因此NS-SN磁极布置方式由于其产生的磁场强度较大,从而导致其材料去除率也较大,验证不同磁场分布对熔融石英玻璃材料去除率的影响。  相似文献   

11.
针对自由曲面光学玻璃研磨抛光存在的问题,提出通过数控技术结合化学磁性研磨技术来实现自由曲面光学玻璃的研磨抛光。应用正交试验设计对化学磁性研磨试验的4个因素进行研究,最终获得各个因素对于工件表面粗糙度影响的主次顺序,并确定其最优组合为:研磨时间60min,磁感应强度0.8T,研磨间隙1.0mm,磁极转速为3000r/min。  相似文献   

12.
针对现有磁流变抛光技术的加工精度难以提高,加工过程中抛光热不容易控制等问题,对磁流变抛光工艺,以及抗磁性材料工件在抛光过程中的工作间隙的磁通量密度进行了研究。对永磁体抛光刀具刀尖表面模型,以及铜合金工件表面之间的关系和模型进行了归纳,提出了一种基于永磁体的抗磁性材料磁流变抛光方法;利用Maxwell对抛光装置工作间隙磁通密度进行了仿真,并进行了相关试验。研究结果表明:基于磁流变抛光液,利用永磁体组成的抛光刀具对抗磁性材料工件进行加工,工件表面质量有了明显提高,实现了纳米级别的加工精度。  相似文献   

13.
针对集群磁流变抛光加工方法,研究了集群磁流变效应抛光垫对磨粒的"容没"机理。通过建立磨粒"容没"模型,并在磁流变抛光工作液中掺杂大尺寸磨粒对K9光学玻璃与硅片进行抛光加工实验,发现在粒径为0.6μm的磨粒中掺杂粒径为1.8μm的金刚石粉进行抛光后的表面质量优于粒径为1.1μm的磨粒加工的表面质量,且发现随着掺杂磨粒尺寸的增大,加工表面的Ra、Rv值虽有增大,但增长幅度远小于同等状况下游离磨粒加工的增长幅度。研究结果表明:集群磁流变效应抛光垫的磨粒"容没"效应能够使粒径不同的磨粒均匀作用于工件表面,显著减小甚至消除大尺寸磨粒对加工表面造成的损伤。  相似文献   

14.
在光学系统中,非球面零件起到非常大的作用,但是如何得到合格的光学非球面零件是重点和难点。使用工业机器人替代传统手工抛光方式对光学非球面零件凹面进行加工的基本思想是在机器人末端连接1个抛光盘,抛光盘要比光学工件的最大面形直径小得多,在工件表面上沿设计好的轨迹运动,使工件面形误差收敛在可接受的范围内。结合实际工作内容,研制了用于光学非球面零件凹面抛光加工的机器人柔性抛光系统,采用主动式的力控制方式来应对机器人与接触环境间的接触力,并对精密铣磨成型后的光学非球面镜零件凹面进行快速确定性抛光加工试验,得到了较好的试验结果。试验结果证明了使用机器人可以为光学非球面零件凹面做柔性抛光。  相似文献   

15.
传统的磁流变抛光工艺采用抛光缎带的固定位置对工件进行法向加工,由于机床转轴的行程限制,工件陡度较高区域不可达,当前基于等效磁场原理的变切触点抛光方法存在着等效磁场实现成本高,没有充分发挥机械轴与虚拟轴相结合的抛光能力等问题.本文针对这些问题提出了一种用于加工高陡度曲面元件的方法,分析了保证去除函数稳定的磁场特点,通过磁...  相似文献   

16.
侯海鹏  洪滔  计时鸣  王超荣 《机电工程》2011,28(4):411-413,435
为解决模具复杂型腔及异形孔自动化抛光问题,首先建立了模具液流悬浮抛光系统,开发了液流动压力监测平台,实现了抛光工具位置及转速控制;之后结合液流动压理论,分析了模具材料去除模型,获得了流场与压力分布规律;接着通过试验研究了转速和间隙对液流动压力的影响规律;最后优选了6 000 r/min转速和60μm间隙对模具工件进行了...  相似文献   

17.
基于集群磁流变效应超光滑平面抛光理论及研制的试验装置,对单晶SiC基片进行了平面抛光试验研究。研究结果表明,金刚石磨料对单晶SiC基片具有较好的抛光效果;加工间隙在1.4mm以内抛光效果较好,30min抛光能使表面粗糙度值减小87%以上;随着加工时间的延长,表面粗糙度越来越小,加工30min时粗糙度减小率达到86.54%,继续延长加工时间,加工表面粗糙度趋向稳定。通过优化工艺参数对直径为50.8mm(2英寸)6H单晶SiC进行了集群磁流变平面抛光,并用原子力显微镜观察了试件加工前后的三维形貌和表面粗糙度,发现经过30min加工,表面粗糙度Ra从72.89nm减小至1.9nm,说明集群磁流变效应超光滑平面抛光用于抛光单晶SiC基片可行有效且效果显著。  相似文献   

18.
阐述了磁流变抛光原理,依据Preston方程分析了影响磁流变抛光效果的因素,根据实际加工的工件特点,对Preston方程进行了修正;在自制的磁流变抛光实验机上进行抛光加工试验,结果表明,采用修正的磁流变抛光材料去除方程,可以有效控制工件的抛光质量、提高抛光效率。  相似文献   

19.
提出并设计了一种往复式动磁场磁流变抛光试验方法,分析了往复式动磁场磁流变抛光的微观去除机理及工作特点。根据试验要求研究了磁流变抛光液的制备工艺和各成分配比,配制了磁流变抛光液。在分析了其组成和各成分特性的基础上,对配制的磁流变抛光液的性能参数进行测试。采用制备的磁流变抛光液,利用往复式动磁场磁流变抛光方法对材料光学玻璃进行了磁流变抛光试验,结果证明了制备的磁流变抛光液与往复式动磁场磁流变抛光方法的有效性。  相似文献   

20.
磁流变抛光的材料去除数学模型   总被引:10,自引:2,他引:10  
对磁流变抛光液在抛光区域的固态核分布进行了理论分析。在这基础上,以Preston方程为根据,即被加工工件表面材料去除率与压力参数p成正比的关系,该压力由磁化压力和流体动压力组成,建立磁流变抛光的材料去除数学模型。在自研的试验装置上利用磁流变抛光方法加工BK7平面镜工件,验证了数学模型的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号