首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Only two of the early genes of bacteriophage T7 were found to play a significant role in exclusion of superinfecting bacteriophage T3 particles; genes 0.3 and 1. Protein synthesis by the preinfecting phage particle was not required for efficient exclusion. These findings are discussed with regard to the known functions of these genes during T7 development.  相似文献   

2.
Exercise intolerance associated with myalgias, muscle cramps or myoglobinuria may be associated with a dystrophinopathy. A search for abnormal dystrophin expression (using immunohistochemistry, immunoblot and DNA analysis) was carried out in a series of 15 patients. They were selected because they presented exercise intolerance, negative biochemical tests (lipid, glycogen and mitochondrial metabolism) and abnormal immunohistochemistry with at least one anti-dystrophin antibody (anti-Dys 1, rod domain; anti-Dys 2, C terminus; anti-Dys 3, N terminus). Lack of anti-Dys 1 immunoreactivity was seen in three patients and abnormal immunoreactivity with all three anti-dystrophin antibodies in two. Immunoblot confirmed the dystrophinopathy in these five patients only, and multiplex polymerase chain reaction DNA analysis revealed a deletion in the dystrophin gene in two of these patients, affecting the proximal part of the rod domain in one and the distal part of this domain in the other. The clinical, biological and histopathological features of the five patients reported here, together with the previous cases reported in the literature, are described and reveal that exercise intolerance associated with dystrophinopathy displays characteristic clinical, biological and immunohistochemical features and defines a new dystrophinopathy phenotype. The absence of staining in the rod domain provides a secure diagnosis of this syndrome. Dystrophinopathy is one etiology of idiopathic myoglobinuria, requiring genetic counseling.  相似文献   

3.
An in vitro system based upon extracts of Escherichia coli infected with bacteriophage T7 was used to study the mechanism of double-strand break repair. Double-strand breaks were placed in T7 genomes by cutting with a restriction endonuclease which recognizes a unique site in the T7 genome. These molecules were allowed to repair under conditions where the double-strand break could be healed by (i) direct joining of the two partial genomes resulting from the break, (ii) annealing of complementary versions of 17-bp sequences repeated on either side of the break, or (iii) recombination with intact T7 DNA molecules. The data show that while direct joining and single-strand annealing contributed to repair of double-strand breaks, these mechanisms made only minor contributions. The efficiency of repair was greatly enhanced when DNA molecules that bridge the region of the double-strand break (referred to as donor DNA) were provided in the reaction mixtures. Moreover, in the presence of the donor DNA most of the repaired molecules acquired genetic markers from the donor DNA, implying that recombination between the DNA molecules was instrumental in repairing the break. Double-strand break repair in this system is highly efficient, with more than 50% of the broken molecules being repaired within 30 min under some experimental conditions. Gaps of 1,600 nucleotides were repaired nearly as well as simple double-strand breaks. Perfect homology between the DNA sequence near the break site and the donor DNA resulted in minor (twofold) improvement in the efficiency of repair. However, double-strand break repair was still highly efficient when there were inhomogeneities between the ends created by the double-strand break and the T7 genome or between the ends of the donor DNA molecules and the genome. The distance between the double-strand break and the ends of the donor DNA molecule was critical to the repair efficiency. The data argue that ends of DNA molecules formed by double-strand breaks are typically digested by between 150 and 500 nucleotides to form a gap that is subsequently repaired by recombination with other DNA molecules present in the same reaction mixture or infected cell.  相似文献   

4.
A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of bacteriophage T7 filled with DNA within the experimental margin of error.  相似文献   

5.
Tachykinins inhibit salt appetite when applied intracranially in a number of brain regions and may function as endogenous inhibitors of sodium intake. To test the hypothesis that induced increases in salt appetite might involve disinhibition via a reduction in endogenous tachykinin expression, we used a semi-quantitative in situ hybridization analysis to investigate changes in brain areas expressing preprotachykinin-A (PPT-A) and preprotachykinin-B (PPT-B) mRNAs of rats after 1 day of sodium depletion (1d Na dep). PPT-A mRNA levels were detected in neurons of the olfactory tubercle (Tu), the nucleus of the olfactory tubercle (LOT), the dorsal and ventral caudate-putamen (d-CPu and v-CPu), the bed nucleus of the stria terminalis (BNST), the medial preoptic area (mPOA), the habenula (Hb) and the postero-dorsal part of the amygdala (MePD). PPT-B mRNA levels were measured in fundus striati (FStr), d-CPu, v-CPu, BNST, mPOA, dorsomedial hypothalamic nucleus (DMD), arcuate nucleus (Arc), central amygdaloid nucleus (CeL), basolateral amygdaloid nucleus (BLV), LOT, Hb and basal nucleus of Meynert (B). 1d Na dep reduced by 33-61% the mean number of PPT-A grains/cell in Tu, LOT, d-CPu, BNST, mPOA, Hb and MePD compared to control animals. Levels of PPT-B mRNA were not reduced as much by 1d Na dep, although statistically significant reductions of 26, 34 and 17% were found in v-CPu, BNST and B, respectively. These findings, therefore, support the hypothesis that endogenous tachykinins exert an inhibitory influence over sodium appetite.  相似文献   

6.
7.
R plasmids from chloramphenicol-resistant salmonella from Ontario are shown to belong to the H(2) incompatibility subgroup and to mediate a broad-spectrum, phage inhibition function.  相似文献   

8.
9.
Methods developed for isolating bacterial nucleoids were applied to bacteria infected with phage T4. The replicating pool of T4 DNA was isolated as a particle composed of condensed T4 DNA and certain RNA and protein components of the cell. The particles have a narrow sedimentation profile (weight-average s=2,500S) and have, on average, a T4 DNA content similar to that of the infected cell. Their dimensions observed via electron and fluorescence microscopy are similar to the dimensions of the intracellular DNA pool. The DNA packaging density is less than that of the isolated bacterial nucleoid but appears to be roughly similar to its state in vivo. Host-cell proteins and T4-specific proteins bound to the DNA were characterized by electrophoresis on polyacrylamide gels. The major host proteins are the RNA polymerase subunits and two envelope proteins (molecular weights, 36,000 and 31,000). Other major proteins of the host cell were absent or barely detectable. Single-strand breaks can be introduced into the DNA with gamma radiation or DNase without affecting its sedimentation rate. This and other studies of the effects of intercalated ethidium molecules have suggested that the average superhelical density of the condensed DNA is small. However, these studies also indicated that there may be a few domains in the DNA that become positively supercoiled in the presence of high concentrations of ethidium bromide. In contrast to the Escherichia coli nucleoid, the T4 DNA structure remains condensed after the RNA and protein components have been removed (although there may be slight relaxation in the state of condensation under these conditions).  相似文献   

10.
Intermediates in the replication of circular and linear M13 double-stranded DNA by bacteriophage T7 proteins have been examined by electron microscopy. Synthesis generated double-stranded DNA molecules containing a single replication fork with a linear duplex tail. A complex presumably consisting of T7 DNA polymerase and gene 4 helicase/primase molecules was present at the fork together with a variable amount of single-stranded DNA sequestered by gene 2.5 single-stranded DNA binding protein. Analysis of the length distribution of Okazaki fragments formed at different helicase/primase concentrations was consistent with coupling of leading and lagging strand replication. Fifteen to forty percent of the templates engaged in replication have a DNA loop at the replication fork. The loops are fully double-stranded with an average length of approximately 1 kilobase. Labeling with biotinylated dCTP showed that the loops consist of newly synthesized DNA, and synchronization experiments using a linear template with a G-less cassette demonstrated that the loops are formed by active displacement of the lagging strand. A long standing feature of models for coupled leading/lagging strand replication has been the presence of a DNA loop at the replication fork. This study provides the first direct demonstration of such loops.  相似文献   

11.
An in vitro system based upon extracts of bacteriophage T7 infected Escherichia coli was used to study genetic deletions and to examine the importance of DNA replication in the deletion process. When T7 genomes with gene 1.3 inactivated by a 43-bp insert of random sequence DNA bracketed by 11-bp direct repeats were replicated in vitro the inserts were deleted with a frequency of about 10(-5) deletions per genome replication. Under conditions where deletion could take place only by recombination between direct repeats on distinct DNA molecules deletion frequency was at least an order of magnitude lower. These data demonstrate the utility of the in vitro system as a means for examining deletion mechanisms and underscore the importance of DNA replication in deletions.  相似文献   

12.
13.
A defined in vitro DNA packaging system of phage T3, which is composed of purified proheads and two packaging proteins, the products of genes 18 and 19 (gp18 and gp19, respectively), displayed a DNA-dependent ATPase activity. ATP was hydrolyzed to ADP and Pi. The ATPase activity was stimulated by nonpackageable DNA, such as single-stranded or circular DNA, or RNA (nonpac-ATPase). Among the inhibitors of DNA packaging, actinomycin D specifically inhibited the ATPase activity that was tightly coupled to DNA packaging (pac-ATPase), but did not inhibit the nonpac-ATPase activity. Both activities depended upon a functional packaging complex, but the nonpac-ATPase, once activated, did not require DNA. Unpackageable pUC18 DNA inhibited the pac-ATPase and the phage yield in parallel. Approximately one molecule of ATP was hydrolyzed during the translocation of 1.8 bp of T3 DNA.  相似文献   

14.
15.
Sphingomonas yanoikuyae B1 is extremely versatile in its catabolic ability. An insertional mutant strain, S. yamoikuyae EK504, which is unable to grow on naphthalene due to the loss of 2-hydroxychromene-2-carboxylate isomerase activity, was utilized to investigate the role of this enzyme in the degradation of anthracene by S. yanoikuyae B1. Although EK504 is unable to grow on anthracene, this strain could transform anthracene to some extent. A metabolite in the degradation of anthracene by EK504 was isolated by high-pressure liquid chromatography (HPLC) and was identified as 6,7-benzocoumarin by UV-visible, gas-chromatographic, HPLC/mass-spectrometric, and 1H nuclear magnetic resonance spectral techniques. The identification of 6,7-benzocoumarin provides direct chemical and genetic evidence for the involvement of nahD in the degradation of anthracene by S. yanoikuyae B1.  相似文献   

16.
Bacteriophage T7 4A' protein is a DNA helicase that unwinds DNA in a reaction coupled to dTTP hydrolysis. To understand better its mechanism of DNA unwinding, we characterized a set of 4A' mutant proteins (Washington, M. T., Rosenberg, A. H., Griffin, K., Studier, F. W., and Patel, S. S. (1996) J. Biol. Chem. 271, 26825-26834). We showed here, using single turnover DNA unwinding assays, that the 4A'/E348K mutant protein had the unusual property of unwinding DNA (with a 5-6-fold slower rate) despite a significant defect in its dTTPase activity (a 25-30-fold slower rate). Comparing the DNA unwinding rates to the dTTPase rates, we estimated the DNA unwinding efficiencies of both wild-type (about 1 base pair unwound per dTTP hydrolysis) and mutant (4 to 6 base pairs unwound per dTTP hydrolysis). Thus the mutant had a 4-6-fold improvement in its DNA unwinding efficiency over that of the wild-type. We believe that this mutant undergoes less slippage (uncoupled dTTP hydrolysis) than the wild-type. We speculate that nature has selected for a high rate of DNA unwinding rather than a high efficiency of DNA unwinding. Thus even though the mutant is more efficient at DNA unwinding, the wild-type probably was selected because it unwinds DNA faster.  相似文献   

17.
The role of the sinoatrial ring bundle (SARB) in internodal conduction was examined by the microelectrode technique in excised rabbit hearts. The spread of the sinus impluse to the surrounding tissues was shown to proceed anteriorly toward the right branch of the crista terminalis significantly faster than toward the other direction. Thus the right SARB and the right branch of the crista terminalis close to the sinus node were the earliest areas excited by the sinus impulse in the areas surrounding the sinus node. It was further shown that the activation sequence does not initiate from the right SARB to the right branch of the crista terminalis via the junction of these two structures. Cutting the SARB did not produce any delay in conduction from the sinus node to the atrioventricular (AV) node. The conduction velocity measured at the endocardial surface by two microelectrodes has proved that conduction in the crista terminalis was significantly faster than in the SARB. The upstroke of the action potential from the crista terminalis was also steeper than that from the SARB. These results suggest that the SARB is not the main route for impulse propagation from the sinus node to the AV node; the fastest internodal conduction therefore takes place with wide wave fronts, along the crista terminalis.  相似文献   

18.
19.
In bacteriophage T7 the gene 2.5 single-stranded DNA-binding protein and the gene 4 helicase together promote the annealing of homologous regions of two DNA partners to form a joint molecule and subsequent strand transfer. In this reaction T7 gene 2.5 protein is essential for joint molecule formation, but is not required for T7 gene 4 protein-mediated strand transfer. T7 gene 4 helicase alone is able to mediate strand transfer, provided that a joint molecule is available. The present paper shows that, in addition, strand transfer proceeds at a normal rate even when both DNA partners contain ultraviolet-induced pyrimidine dimers (0.6 dimer per 100 nt). An insert of a relatively long (842-nt) segment of nonhomologous DNA in the single-stranded DNA partner has no effect on strand transfer, whereas its presence in the double-stranded partner prevents strand transfer. A short insert (37 nt) can be tolerated in either partner. Thus, DNA helicase is able to participate in recombinational DNA repair through its role in strand exchange, providing a pathway distinct from nucleotide excision repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号