首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eizo Marutani  Mikio Takano 《Polymer》2004,45(7):2231-2235
The synthesis of magnetite nanoparticles coated with a well-defined graft polymer is reported. The magnetite nanoparticles with an initiator group for copper-mediated atom transfer radical polymerization (ATRP), 2-(4-chlorosulfonylphenyl) ethyltrichlorosilane (CTCS) chemically bound on their surfaces were prepared by the self-assembled monolayer-deposition method. The surface-initiated ATRP of methyl methacrylate (MMA) was carried out with the CTCS-coated magnetite nanoparticles in the presence of free (sacrificing) initiator, p-toluenesulfonyl chloride. Polymerization proceeded in a living fashion, exhibiting first-order kinetics of monomer consumption and a proportional relationship between molecular weight of the graft polymer and monomer conversion, thus providing well-defined, low-polydispersity graft polymers with an approximate graft density of 0.7 chains/nm2. The molecular weight and polydispersity of the graft polymer were nearly equal to those of the free polymer produced in the solution, meaning that the free polymer is a good measure of the characteristics of the graft polymer. The graft polymer possessed exceptionally high stability and remarkably improved dispersibility of the magnetite nanoparticles in organic solvent.  相似文献   

2.
Two pyridylphosphine ligands, 2-(diphenylphosphino)pyridine (DPPP) and 2-[(diphenylphosphino)methyl]pyridine (DPPMP), were investigated as complexing ligands in the iron-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) and styrene with various initiators and solvents. In studies of their ATRP behavior, the FeBr2/DPPP catalytic system was a more efficient ATRP catalyst for the MMA polymerization than the other complexes studied in this paper. Most of these systems were well controlled with a linear increase in the number-average molecular weights (Mn) vs. conversion and relatively low molecular weight distributions (Mw/Mn = 1.15-1.3) being observed throughout the reactions, and the measured molecular weights matched the predicted values with the DPPP ligand. The polymerization rate of MMA attained a maximum at a ratio of ligand to metal of 2:1 in p-xylene at 80 °C. The polymerization was faster in polar solvents than in p-xylene. The 2-bromopropionitrile (BPN) initiated ATRP of MMA with the FeX2/DPPP catalytic system (X = Cl, Br) was able to be controlled in p-xylene at 80 °C. The polymerization of styrene was able to be controlled using the PECl/FeCl2/DPPP system in DMF at 110 °C.  相似文献   

3.
Hormoz Eslami 《Polymer》2005,46(15):5484-5493
The emulsion atom transfer radical polymerization (ATRP) of 2-ethylhexyl methacrylate (EHMA) was carried out with ethyl 2-bromoisobutyrate (EBiB) as an initiator and copper bromide (CuBr)/4,4′-dinonyl-2,2′-bipyridyl (dNbpy) as a catalyst system. The effects of surfactant type and concentration, temperature, monomer/initiator ratio, and CuBr2 addition on the system livingness, polymer molecular weight control, and latex stability were examined in detail. It was found that the polymerization systems with Tween 80 and Brij 98 as surfactants at 30 °C gave the best latex stability. The polymer samples prepared under these conditions had narrow molecular weight distributions (Mw/Mn=1.1-1.2) and linear relationships of number-average molecular weight versus monomer conversion.  相似文献   

4.
Youliang Zhao 《Polymer》2005,46(15):5808-5819
Novel polyarylether dendrimers with 1,3,5-tri(4-hydroxyphenoxy)benzene core, polybenzylether interior, and benzyl 2-bromoisobutyrate surface group (CMGn-Br, n=1-3, with functionality of 6, 12, and 24, respectively) were prepared by convergent procedure. ATRP of tert-butyl acrylate (tBA) and styrene (St) with CMGn-Br dendrimer initiators in the presence of CuBr/pentamethyldiethylenetriamine catalytic system was investigated in detail, and a series of well-defined dendrimer-like star PtBA and PSt with precise arm numbers were synthesized under suitable conditions. The quantitative initiation of the dendrimer initiators was demonstrated by high initiation efficiency, 1H NMR spectra, hydrolysis, and MALLS/SEC approach. Star block copolymers comprising PSt and PtBA segments with low polydispersity (1.08<Mw/Mn<1.18) were also successfully synthesized using functional macroinitiators by block copolymerization. In addition, the thermal properties of the resultant polymers were characterized by DSC and TGA.  相似文献   

5.
A series of novel multifunctional initiators derived from adamantane-based derivatives have been used in the syntheses of various styrenic and (meth)acrylic star polymers by atom transfer radical polymerization (ATRP). Conditions were identified in each system to produce star polymers with nearly monomodal molecular distributions. These synthesized star polymers have glass transition temperatures similar to those known for high-molecular-weight linear polymers. We obtained a series of adamantane-contained star polymers covering a wide range of molecular weights by adjusting the monomer-to-initiator ratio and the solvent polarity. Because of reaction heterogeneity and inevitable termination processes, the occurrence of star-star coupling led to a lower than predicted molecular weight polydispersity. When hydrolyzed from their cores by NaOH, the values of Mw of the arms of the PMMA star polymer did not change with reaction time, at least for the first 48 h of the reaction, which implies that no significant PMMA hydrolysis occurs within this interval of time.  相似文献   

6.
9-Amino epi-quinine was used as a ligand in the atom transfer radical polymerization (ATRP) for the first time, and high monomer conversion as well as small polydispersity could be obtained. The 9-amino epi-quinine-containing organosilane was synthesized and immobilized onto three different silica supports, i.e., fumed SiO2, SBA-15, and MCM-48, followed by complexing with CuBr. With the MCM-48 supported catalyst, polymerization of methyl methacrylate achieved high monomer conversion, small polydispersity, and low residual copper content in the product. This heterogeneous catalyst could also be recycled effectively.  相似文献   

7.
V. Raghunadh  S. Sivaram 《Polymer》2004,45(10):3149-3155
Atom transfer radical polymerization of lauryl methacrylate (LMA) was carried out in the presence of various ligands using ethyl-2-bromoisobutyrate as initiator and CuBr as catalyst in toluene at 95 °C. The ligands used were 2,2′-bipyridyl,4,4′-dimethyl-2,2′-bipyridyl, N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA) and N-(n-propyl)-2-pyridylmethanimine (PPMI). Controlled polymerization was observed with PMDETA and PPMI ligands and poly(LMA)s with narrow molecular weight distribution (MWD) (Mw/Mn≤1.2) were obtained. The first-order time-conversion plot showed the presence of termination in the presence of PMDETA. A linear first-order time-conversion plot with a small induction period (∼10 min) was observed in the presence of PPMI ligand. Di-block copolymers of LMA and methylmethacrylate with controlled molecular weight and narrow MWDs were synthesized via sequential monomer addition.  相似文献   

8.
Monobrominated polystyrene (PStBr) chains were prepared using standard atom transfer radical polymerization (ATRP) procedures at 80 °C in THF, with monomer conversions allowed to proceed to approximately 40%. At this time, additional copper catalyst, reducing agent, and ligand were added to the unpurified reaction mixture, and the reaction was allowed to proceed at 50 °C in an atom transfer radical coupling (ATRC) phase. During this phase, polymerization continued to occur as well as coupling; expected due to the substantial amount of residual monomer remaining. This was confirmed using gel permeation chromatography (GPC), which showed increases in molecular weight not matching a simple doubling of the PStBr formed during ATRP, and an increase in monomer conversion after the second phase. When the radical trap 2-methyl-2-nitrosopropane (MNP) was added to the ATRC phase, no further monomer conversion occurred and the resulting product showed a doubling of peak molecular weight (Mp), consistent with a radical trap-assisted ATRC (RTA-ATRC) reaction.  相似文献   

9.
A ligand is a crucial element for atom transfer radical polymerization (ATRP). A new nitrogen-containing compound, 1,1’-(2,2’-(ethane-1,2-diylbis(butyl azanediyl)) -bis(ethane-2,1-diyl)) dipyrrolidin-2-one (DBBD), was synthesized and utilized as the ligand of copper halide for ATRP of methyl methacrylate (MMA) and methyl acrylate (MA). It was found that the CuBr/DBBD and Ethyl 2-bromoisobutyrate (EBIB) system could mediate the polymerization of MMA and the reaction was first-order kinetics, although the control of molecular weights was not perfect. When CuCl was used to replace CuBr, the molecular weights of obtained polymers were well controlled, which indicated the halide exchange could improve the controllability. In the polymerization of MA using Methyl 2-bromopropronate (MBP) or EBIB as initiator and CuCl/DBBD as catalyst, good control of the polymerization could be achieved and the molecular weights were very close to the predicted value.  相似文献   

10.
The dibenzocyclooctyne end functionalized agent 1 was designed as atom transfer radical polymerization (ATRP) initiator. The ATRP was then explored on three types of monomers widely used in free radical polymerization: methyl methacrylate, styrene, and acrylates (n-butyl acrylate and tert-butyl acrylate). The living polymerization behaviors were obtained for the methyl methacrylate and styrene monomers. The SPAAC click reactivity of dibenzocyclooctyne end group were demonstrated by successfully reacting with azide functionalized small chemical agents and polymers. Various topological polymers such as block and brush polymers were produced from strain-promoted azide-alkyne cycloaddition reaction (SPAAC) using the resultant dibenzocyclooctyne end functionalized poly(methyl methacrylate)/polystyrene as building blocks. For the acrylates, however, the polymerization did not hold the living characteristics with the dibenzocyclooctyne end functionalized ATRP initiator 1.  相似文献   

11.
Changying Zhu  Fei Sun  Min Zhang  Jian Jin 《Polymer》2004,45(4):1141-1146
Atom transfer radical suspension polymerization (suspension ATRP) of methyl methacrylate (MMA) was carried out using 1-chloro-1-phenylethane (1-PECl) as initiator, copper chloride/bipyridine (CuCl/bpy) as catalyst. The polymerization was accomplished with a mechanical agitator under the protection of nitrogen atmosphere. Apart from the dispersing agent (1% PVA), NaCl was also used in the water phase to decrease the diffusion of CuCl/bpy to water and the influence of the concentration of NaCl was investigated. Subsequently, the kinetic behavior of the suspension ATRP of MMA at different temperatures was studied. At 90 and 95 °C, the polymerization showed first order with respect to monomer concentration until high conversion. The molecular weight (Mn) of the polymer increased with monomer conversion. However, at lower temperatures, different levels of autoacceleration was observed. The polymerization deviated from first order with respect to monomer concentration when the conversion was up to some degree. The lower the temperature was, the more the deviation displayed. On comparison with bulk ATRP of MMA, the rate of suspension ATRP was much faster.  相似文献   

12.
The reverse atom transfer radical polymerization of methyl methacrylate was investigated in different solvents: xylene, N,N‐dimethylformamide, and pyridine. The polymerizations were uncontrolled, using 2,2′‐bipyridine as a ligand in xylene and pyridine because the catalyst (CuBr2/2,2′‐bipyridine complex) had poor solubility in the xylene system. In the pyridine system, the solubility of the catalyst increased, but the solvent could complex with CuBr2, which influenced the control of the polymerization. In the N,N‐dimethylformamide system, the catalyst could be dissolved in the solvent completely, but the ? N(CH3)2 group in N,N‐dimethylformamide could also complex with CuBr2, so the polymerization could not be well controlled. The ligand of 4,4′‐di(5‐nonyl)‐2,2′‐bipyridine was also investigated in xylene; the introduction of the ? CH(C4H9)2 group enabled the CuBr2/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine complex to easily dissolve in xylene, and the polymerizations were well controlled. The number‐average molecular weight increased linearly with the monomer conversion from 4280 to 14,700. During the whole polymerization, the polydispersities were quite low (1.07–1.10). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
We report on the synthesis of an azobenzene-containing inimer 6-{4-[4-(2-(2-bromoisobutyryloxy)hexyloxy)phenylazo]phenoxy}hexyl methacrylate (I) and used it to prepare hyperbranched homopolymer and copolymers by self-condensing vinyl polymerization (SCVP) and copolymerization (SCVCP) with its precursor 6-{4-[4-(6-hydroxyhexyloxy)phenylazo]phenoxy}hexyl methacrylate (M) using atom transfer radical polymerization (ATRP). Depending on the comonomer ratio, γ=[M]0/[I]0, branched polymethacrylates with number-average weights between 8000 and 20,000 and degree of branching (DB) between 0.08 and 0.49 were obtained by SCVCP, as evidenced by GPC and 1H NMR analysis. In addition, the photochemical properties of the polymers were also studied by UV-vis spectra and found the structure of polymers affect obviously the trans-cis isomerization properties of the branched polymers.  相似文献   

14.
Xifei Yu  Tongfei Shi  Lijia An 《Polymer》2006,47(5):1538-1546
A new asymmetric H-shaped block copolymer (PS)2-PEO-(PMMA)2 has been designed and successfully synthesized by the combination of atom transfer radical polymerization and living anionic polymerization. The synthesized 2,2-dichloro acetate-ethylene glycol (DCAG) was used to initiate the polymerization of styrene by ATRP to yield a symmetric homopolymer (Cl-PS)2-CHCOOCH2CH2OH with an active hydroxyl group. The chlorine was removed to yield the (PS)2-CHCOOCH2CH2OH ((PS)2-OH). The hydroxyl group of the (PS)2-OH, which is an active species of the living anionic polymerization, was used to initiate ethylene oxide by living anionic polymerization via DPMK to yield (PS)2-PEO-OH. The (PS)2-PEO-OH was reacted with the 2,2-dichloro acetyl chloride to yield (PS)2-PEO-OCCHCl2 ((PS)2-PEO-DCA). The asymmetric H-shaped block polymer (PS)2-PEO-(PMMA)2 was prepared via ATRP of MMA at 130 °C using (PS)2-PEO-DCA as initiator and CuCl/bPy as the catalyst system. The architectures of the asymmetric H-shaped block copolymers, (PS)2-PEO-(PMMA)2, were confirmed by 1H NMR, GPC and FT-IR.  相似文献   

15.
马平  刘荣杰  王婷 《化工科技》2014,22(5):64-67
介绍了有关原子转移自由基聚合(ATRP)的聚合原理。最新研究表明:应用ATRP法进行聚合反应可以制备接枝聚合物、嵌段聚合物、超支化聚合物和其它有机/无机混合型聚合物等。ATRP在高分子聚合反应领域具有十分广阔的应用前景。  相似文献   

16.
Uma Chatterjee 《Polymer》2005,46(24):10699-10708
Amphiphilic di- and tri-block copolymers of poly(methyl methacrylate) (PMMA) and poly(2-dimethylamino)ethyl methacrylate (PDMAEMA) have been synthesized by atom transfer radical polymerization (ATRP) at ambient temperature (35 °C) in the environment-friendly solvent, aqueous ethanol (water 16 vol%) using CuCl/o-phenanthroline as the catalyst. The PDMAEMA blocks are contaminated with ethyl methacrylate (EMA) residues to the extent of 1-2 mol% of DMAEMA depending on the length of the PDMAEMA block. The EMA forms through the autocatalyzed ethanolysis of the DMAEMA monomer and undergoes random copolymerization with the latter. The rate of ethanolysis is unexpectedly greater in the aqueous ethanol than in neat ethanol, which has been attributed to the higher polarity of the former than of the latter. In contrast to the ethanolysis no hydrolysis of DMAEMA in the aqueous ethanol medium could be detected for 133 h. The block copolymers form micelles in water. Their solubility and CMC in neutral water have been studied. Dynamic light scattering (DLS) studies reveal that for a fixed degree of polymerization (DP) of the PMMA block the hydrodynamic diameter of the micelles in methanolic water (water 95 vol%) increases at a faster rate with the DP of the PDMAEMA block when it is much greater than that of the PMMA block compared to when it is less than or close to that of the latter.  相似文献   

17.
Bin Zhao 《Polymer》2003,44(15):4079-4083
This communication describes a novel strategy to synthesize binary mixed homopolymer brushes from mixed self-assembled monolayers (SAMs) on silica substrates by combining atom transfer radical polymerization (ATRP) and nitroxide-mediated radical polymerization (NMRP). Mixed SAMs terminated by ATRP and NMRP initiators were prepared by coadsorption of two corresponding organotrichlorosilanes from toluene solutions. Mixed poly(methyl methacrylate) (PMMA)/polystyrene (PS) brushes were synthesized by ATRP of MMA at 80 °C followed by NMRP of styrene at 115 °C. Corresponding ‘free’ initiators were added into the solutions to control the polymerizations. We have found that the brush thickness increases with molecular weight in a nearly linear fashion. For a series of binary brushes consisting of PMMA of molecular weight of 26,200 and PS of various molecular weights, we have observed a transition in water contact angles with increasing PS molecular weight after CH2Cl2 treatment. Moreover, binary mixed polymer brushes with comparable molecular weights for two grafted polymers undergo reorganization in response to environmental changes, exhibiting different wettabilities.  相似文献   

18.
Homogeneous atom transfer radical polymerization of methyl methacrylate (MMA) under microwave irradiation (MI) with low concentration of initiating system [ethyl 2-bromobutyrate (EBB)/CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)] was successfully carried out in N,N-dimethylformamide (DMF) at 69 °C. Plots of ln ([M]0/[M]) vs. time and molecular weight evolution vs. conversion showed a linear dependence. A 27.3% conversion for a polymer with number-average molecular weight (Mn) of 57,280 and a polydispersity index (PDI) of 1.19, was obtained under MI (360 W) with the ratio of [MMA]0/[EBB]0/[CuCl]0/[PMDETA]0=2400/1/2/2 in only 150 min; but 963 min was needed under conventional heating (CH) process to reach a 26.0 % conversion (Mn=63,990 and PDI=1.14) under identical polymerization conditions, indicating a significant enhancement of the polymerization rate under MI.  相似文献   

19.
介绍了原子转移自由基聚合的原理及其在生物材料合成方面的应用。  相似文献   

20.
The kinetics of methyl methacrylate (MMA) homopolymerization performed by atom transfer radical polymerization (ATRP) is investigated in detail using ethyl‐2‐bromopropionate (EPN‐Br) as initiator, CuBr as catalyst, and pentamethyldiethylenetriamine (PMDETA) as ligand in ionic liquids (ILs) and acetonitrile. ILs in this research covered two different substitutional imidazolium cations and anions including halogen and halogen‐free ones. The typical cations include 1‐butyl‐3‐methylimidazolium, 1‐ethyl‐3‐methylimidazolium and the typical anions include bromide, tetrafluoroborate. The effects of solvents, temperature, and reaction ingredients ratios on the polymerization kinetics are all investigated in this article and the apparent energy of activation (ΔE) calculated for the ATRP of MMA in 1‐butyl‐3‐methyl‐imidazolium tetrafluoroborate is 6.95 KJ/mol. The number‐average molecular weights (Mn) increase linearly with conversion but are much higher than the theoretical values. It is probably due to the low concentration of deactivator at the early stage of polymerization and the lower bond energy of C‐Br in PMMA‐Br than that in EPN‐Br. Moreover, the catalyst is easily separated from the polymer and the regenerated catalyst is reused for more than three times. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号