首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the utilization of a renewable energy‐based integrated system with the latent heat storage option for building thermal management systems. Both energy and exergy‐based assessments of the current combined system are conducted. For this purpose, phase change material (PCM)‐embedded radiant wall heating system using solar heating and ground source heat pump (GSHP) is studied thermodynamically. Heat is essentially stored within the PCMs as used in the panels to increase the effectiveness. The stored heat is released when the solar energy is not available. In the thermal energy storage analyses, four different PCMs are considered. The present results show that the overall first ‐ law (energy) and second ‐ law (exergy) efficiencies of the PCM‐free radiant heating system are much lower than the case with the PCM‐embedded radiant heating system. Therefore, it is confirmed that the energy efficiency increases from 62% to 87% while the exergy efficiency rises from 14% to 56% with the option where SP26E PCM is employed accordingly.  相似文献   

2.
为分析相变蓄热装置在充热和放热过程中的热性能,设计并搭建一套相变蓄热供热装置中试实验系统,研究主要运行参数对相变蓄热装置热性能的影响;在此基础上,结合项目案例,对相变蓄热供热系统经济性进行分析。结果表明:相变材料(Phase Change Material, PCM)凝固过程中的传热主要受相变介质内部导热控制;而在其熔化过程中自然对流对传热起重要控制作用;蓄热装置充热速率快于放热速率。提高传热流体流量有助于增强PCM中的热传递,缩短充/放热时间,但蓄热装置内PCM温度分布均匀性有所降低;为降低系统能耗,提高储放热效率,优先选用小流量进行充/放热。该相变蓄热供热项目的动态投资回收期为3.55年,具有良好的经济性。研究结果可对相变蓄热供热系统的设计及应用推广提供参考依据。  相似文献   

3.
Heat transfer barriers and other practical difficulties do currently hamper the development and application of (phase change materials) PCM–wallboard systems. In this study thermal performance of randomly mixed PCM and laminated PCM–wallboard systems have been numerically evaluated and results compared. The laminated system displayed up to 50% increment in heat flux enhancement and about 18% increase in heat transfer rates. Consequently, the laminated PCM–wallboard system has greater potential for heating and cooling application in buildings than the randomly mixed system. Experimental validation and investigation into manufacturing techniques are however needed to establish the commercial viability. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
含相变微粒流体层蓄热过程的传热机理研究   总被引:1,自引:0,他引:1  
对含有相变微粒并且水平放置的流体层,在底部加热和周围绝热保温条件下的蓄热传热机理进行了理论分析研究,与无相变颗粒流体的蓄热过程进行了对比数值模拟。结果表明:对较薄的蓄热流体层,含相变微粒流体的蓄热完成时间短于无相变颗粒流体,随着液层厚度的增加这种差别减小。同时对液体层内不同高度下平均温度的分布和变化过程进行了分析研究。  相似文献   

5.
In this paper, the hot water heating wallboard with phase-change material (PCM) was prepared. PCM was added into the wallboard. Intermittent heating mode was used in the experiment. Heat transfer performance of the wallboards was tested and numerically simulated by ANSYS software. The results showed that the temperature and heat flow on the surface of the PCM wallboard (PCMW) were lower than that of the common wallboard without PCM in the heating process. And the decreasing in the temperature and heat flow of the PCMW was lower than that of the common wallboard. The experimental and simulated results were identical in most cases. PCMW can remain a certain heat flow on the inner surface, so it can control the fluctuation of indoor temperature, and enhanced the comfort of indoor climate. Different influence factors and optimal design of the hot water heating phase-change wallboard were analysed.  相似文献   

6.
《Applied Thermal Engineering》2002,22(10):1141-1151
Efficient and reliable storage systems for thermal energy are an important requirement in many applications where heat demand and supply or availability do not coincide. Heat and cold stores can basically be divided in two groups. In sensible heat stores the temperature of the storage material is increased significantly. Latent heat stores, on the contrary, use a storage material that undergoes a phase change (PCM) and a small temperature rise is sufficient to store heat or cold. The major advantages of the phase change stores are their large heat storage capacity and their isothermal behavior during the charging and discharging process. However, while unloading a latent heat storage, the solid–liquid interface moves away from the heat transfer surface and the heat flux decreases due to the increasing thermal resistance of the growing layer of the molten/solidified medium. This effect can be reduced using techniques to increase heat transfer. In this paper, three methods to enhance the heat transfer in a cold storage working with water/ice as PCM are compared: addition of stainless steel pieces, copper pieces (both have been proposed before) and a new PCM-graphite composite material. The PCM-graphite composite material showed an increase in heat flux bigger than with any of the other techniques.  相似文献   

7.
Phase change materials (PCMs) are attractive for use in thermal energy storage applications and thermal regulation/control due to their high-energy storage density over a small temperature range. The direct use of phase change materials for energy storage and/or heat transfer applications has been limited due to the low thermal conductivity of the PCM particularly when solidifying on the heat transfer surface. A Phase change slurry (PCS) consists of small micro-encapsulated PCM particles suspended in a carrier fluid which enhances the heat transfer to the PCM. The PCS can serve not only as the thermal storage media but also as the heat transfer fluid, and hence may have many potentially important applications including in the field of heating, ventilation and air-conditioning (HVAC), refrigeration, solar energy and heat exchangers. A test system to examine PCS performance in residential thermal energy storage applications has been developed to both observe and characterise the thermal processes that occur in a thermal store with a helical coil heat exchanger. These test results will be used to improve the system design and identify limitations when used for intermittent application.  相似文献   

8.
基于焓法模型对水平管壳式相变蓄热装置热性能的增强进行研究,首先分析蓄热过程中传统管壳式装置内材料的传热及流动机理;然后引入椭圆元素并对比椭圆内管及外壳的强化传热效果;最后对热源温度、相变材料导热系数及初始温度对装置热性能的作用规律进行探讨。结果显示,椭圆外壳的强化传热效果优于内管,同等条件下,长短轴之比为2的椭圆外壳可使蓄热时间缩短53.5%。热源温度升高,椭圆外壳的强化传热效果进一步增强,相变材料的导热系数及初始温度对装置热性能的影响较小。  相似文献   

9.
Thermal dynamics of wallboard with latent heat storage   总被引:3,自引:0,他引:3  
Wallboard impregnated with phase change material (PCM) will provide thermal storage that is distributed throughout a building, enabling passive solar design and off-peak cooling with frame construction. This paper examines the thermal dynamics of PCM wallboard that is subjected to the diurnal variation of room temperature, but is not directly illuminated by the sun. The purpose of this work is to provide guidelines useful in selecting an optimal PCM and in estimating the benefits of PCM architectural products. The energy stored during a daily cycle depends upon a) the melt temperature of the PCM; b) the temperature range over which melt occurs; and c) the latent capacity per unit area of wallboard. Situations with the wallboard on an interior partition or on the inside of the building envelope are investigated separately. The following findings are presented. The maximum diurnal energy storage occurs at a value of the PCM melt temperature that is close to the average room temperature in most circumstances. Diurnal energy storage decreases if the phase change transition occurs over a range of temperatures. The diurnal storage achieved in practice may be limited to the range 300–400 kJ/m2, even if the wallboard has a greater latent capacity. The implications of these findings for test room experiments are discussed.  相似文献   

10.
The single-tank latent heat thermal energy storage(LHTES) of solar energy mainly consists of two modules: the first one is the phase change material(PCM) module heated by solar energy; the second is a module of heat transfer between melted PCM and the user's low-temperature water. This paper mainly focuses on the former one. To investigate the heat transfer performance of the paraffin-based solar single storage tank and find a more suitable experimental configuration, as basic research work, we established a single-tank thermal storage platform and then conducted a numerical simulation on the heat transfer process with Fluent. The result of numerical simulation shows that the test situation was basically reflected and the data agreed well with the experiment results. The numerical simulation analysis is accurate and the method is reliable. To obtain the heat transfer performance of paraffin in a single tank and strengthen heat transfer, the aspect ratio, the melting temperature of paraffin, and the heating power of the electric heater were analyzed based on simulation. The results show that the heat transfer gets more uniform when the aspect ratio is lower. This results in an increase in the liquid fraction of 61.83% to 76.47% one hour after heating when the aspect ratio of the tank reduced from 2.8 to 1.1. The higher the melting temperature of paraffin, the longer it takes for PCM to reach a stable state. And the curvature of liquid heating is greater than that of solid heating at the bottom layer. Under the constant total work, the heating power has little effect on the heat transfer performance of the paraffin. This study will provide some reference value for the optimization design of single-tank LHTES systems in the future.  相似文献   

11.
The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA–SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 °C and has a latent heat of 181.7 J g−1, and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA–SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems.  相似文献   

12.
Energy analysis of space solar dynamic heat receivers employing solid–liquid phase change storage is developed. The heat receiver is a critical component of a solar dynamic system. Phase change thermal energy storage is used in the heat receiver. The energy analysis presented here can be used to understand the energy transfer in the heat receiver and thermal energy storage in phase change materials (PCM). The heat receiver cavity radiation mathematical model and the working fluid tube heat model are established. Energy loss, energy absorbed by gas, the latent and sensible thermal energy storage in PCM, maximum tube temperature, gas outlet temperature and liquid PCM fraction were calculated. The results are analyzed and could be used in heat receiver design.  相似文献   

13.
组合式相变材料蓄热系统中相变温度分布研究   总被引:12,自引:3,他引:12  
建立了组合式相变材料蓄热系统物理模型,在忽略显热的假设条件下研究了相变温度呈线性分布的组合式相变材料蓄热系统传热特性,得出了最优线性相变温度分布,并采用考虑显热的数值计算(有限差分法)证实了理论分析得出的最优相变温度与实际相变温度分布几乎相同。  相似文献   

14.
利用太阳能对水加热并通入相变墙进行蓄热,对减少严寒地区单体建筑供热能耗有重要意义。以大庆市某单体建筑为例,结合该地区太阳能分布特点及建筑热负荷大小,对适用于该地区的太阳能-相变墙系统进行集热与储热能力计算,并采用CFD方法研究单一工况下该系统的热工变化规律及不同热水参数、换热管规格对相变墙蓄热特性的影响。结果表明:该相变墙热稳定性良好,但受自然对流影响,底部相变材料熔化较慢;管径DN25、入口流速0.3m/s、供水温度310.15K、回水温度309.15K、管间距107mm可使相变材料在4小时内完成蓄热,平均节能率为31.8%。研究结果可望为降低严寒地区建筑供热能耗提供新思路。  相似文献   

15.
This paper is aimed at analyzing the behavior of a packed bed latent heat thermal energy storage system. The packed bed is composed of spherical capsules filled with paraffin wax as PCM usable with a solar water heating system. The model developed in this study uses the fundamental equations similar to those of Schumann, except that the phase change phenomena of PCM inside the capsules are analyzed by using enthalpy method. The equations are numerically solved, and the results obtained are used for the thermal performance analysis of both charging and discharging processes. The effects of the inlet heat transfer fluid temperature (Stefan number), mass flow rate and phase change temperature range on the thermal performance of the capsules of various radii have been investigated. The results indicate that for the proper modeling of performance of the system the phase change temperature range of the PCM must be accurately known, and should be taken into account.  相似文献   

16.
Latent heat thermal energy storage is one of the most efficient ways to store thermal energy for heating water by energy received from sun. This paper summarizes the investigation and analysis of thermal energy storage incorporating with and without PCM for use in solar water heaters. The relative studies are classified on the basis of type of collector and the type of storage used i.e. sensible or latent. A thorough literature investigation into the use of phase change material (PCM) in solar water heating has been considered. It has been demonstrated that for a better thermal performance of solar water heater a phase change material with high latent heat and with large surface area for heat transfer is required.  相似文献   

17.
《Applied Thermal Engineering》2000,20(11):1019-1037
A latent heat storage unit incorporating heat pipes embedded in phase change material (PCM) is developed and tested for a novel application in low energy cooling of buildings. A one-dimensional mathematical model of the heat transfer from air to PCM is presented to allow sizing of a test unit. Details of the construction and testing of one heat pipe/PCM unit in a controlled environment are described, and measurements of heat transfer rate and melting times are presented. When the difference between air and PCM temperature was 5°C, the heat transfer rate was approximately 40 W over a melt period of 19 h. The heat transfer rate could be improved, and the phase change time shortened, with an alternative design for finning of the heat pipe inside the PCM.  相似文献   

18.
A parametric analysis is conducted for space cooling systems based on cold water flowing, during the night, within regularly arranged pipes embedded in a layer of phase change material (PCM), located among the structural layers of the ceiling. The introduced PCM layer in conjunction with night cooling add to the usual ceiling cooling systems offers the advantages of low energy consumption, high cool storage capacity, operation under reduced night electricity price, smoothing of electricity consumption by eliminating daily peak loads, improved thermal comfort and elimination of ceiling dripping. Our parametric analysis is based on a transient three‐dimensional finite‐difference solution of the related heat‐transfer problem for various values of all the main system parameters. PCM phase change process is simulated by using the effective thermal capacity function, which is determined experimentally for PCM suitable for air‐conditioning applications. Our tests showed that the main parameters of the system are pipe spacing, PCM layer thickness, pipe depth within the ceiling, cooling water inlet temperature, night cooling duration and PCM properties (thermal conductivity, phase change heat and ends of phase change temperature range). The effect of all the above parameters is analysed and suggestions are made for selecting the proper combinations of their values in order to obtain the lowest energy consumption in conjunction with the highest level of thermal comfort. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
蓄热水箱作为太阳能供暖系统的重要核心设备,其性能直接影响着储能系统的整体运行效率。设计一种基于圆柱形相变单元的相变储热装置,并搭建相变蓄热水箱性能测试平台,通过单一控制变量法得到储热装置放热过程的温度变化曲线。研究表明:对于空间一定的储热装置,在等质量相变材料(PCM)时,相变单元的直径对装置放热速率的影响较大;相变单元之间的间距对装置放热速率的影响较小;当增大换热流体(HTF)的入口流量及降低HTF入口温度时,能大大减少储热装置的放热时间,提高储热装置的整体性能。  相似文献   

20.
W. Saman  F. Bruno  E. Halawa 《Solar Energy》2005,78(2):341-349
The thermal performance of a phase change thermal storage unit is analysed and discussed. The storage unit is a component of a roof integrated solar heating system being developed for space heating of a home. The unit consists of several layers of phase change material (PCM) slabs with a melting temperature of 29 °C. Warm air delivered by a roof integrated collector is passed through the spaces between the PCM layers to charge the storage unit. The stored heat is utilised to heat ambient air before being admitted to a living space. The study is based on both experimental results and a theoretical two dimensional mathematical model of the PCM employed to analyse the transient thermal behaviour of the storage unit during the charge and discharge periods. The analysis takes into account the effects of sensible heat which exists when the initial temperature of the PCM is well below or above the melting point during melting or freezing. The significance of natural convection occurring inside the PCM on the heat transfer rate during melting which was previously suspected as the cause of faster melting process in one of the experiments is discussed. The results are compared with a previous analysis based on a one dimensional model which neglected the effect of sensible heat. A comparison with experimental results for a specific geometry is also made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号