首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper situates the metaphysical antinomy between chance and determinism in the historical context of some of the earliest developments in the mathematical theory of probability. Since Hacking's seminal work on the subject, it has been a widely held view that the classical theorists of probability were guilty of an unwitting equivocation between a subjective, or epistemic, interpretation of probability, on the one hand, and an objective, or statistical, interpretation, on the other. While there is some truth to this account, I argue that the tension at the heart of the classical theory of probability is not best understood in terms of the duality between subjective and objective interpretations of probability. Rather, the apparent paradox of chance and determinism, when viewed through the lens of the classical theory of probability, manifests itself in a much deeper ambivalence on the part of the classical probabilists as to the rational commensurability of causal and probabilistic reasoning.  相似文献   

2.
3.
4.
Chebyshev's lectures on the theory of probability   总被引:2,自引:0,他引:2  
Communicated by B. Bru  相似文献   

5.
6.
7.
I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie–Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general view of inter-theoretic reduction in physics that I have elaborated elsewhere, which differs from the oversimplified picture that treats reduction as a matter of simply taking limits. This interpretation-neutral account rests on a general three-pronged strategy for reduction between quantum and classical theories that combines decoherence, an appropriate form of Ehrenfest׳s Theorem, and a decoherence-compatible mechanism for collapse. It also incorporates a novel argument as to why branch-relative trajectories should be approximately Newtonian, which is based on a little-discussed extension of Ehrenfest׳s Theorem to open systems, rather than on the more commonly cited but less germane closed-systems version. In the Conclusion, I briefly suggest how the strategy for quantum-classical reduction described here might be extended to reduction between other classical and quantum theories, including classical and quantum field theory and classical and quantum gravity.  相似文献   

8.
9.
10.
11.
In previous work, a non-standard theory of probability was formulated and used to systematize interference effects involving the simplest type of quantum systems. The main result here is a self-contained, non-trivial generalization of that theory to capture interference effects involving a much broader range of quantum systems. The discussion also focuses on interpretive matters having to do with the actual/virtual distinction, non-locality, and conditional probabilities.  相似文献   

12.
In this article I discuss the theory of the earth's shape presented by Isaac Newton in Book III of his Principia. I show that the theory struck even the most reputable continental mathematicians of the day as incomprehensible. I examine the many obstacles to understanding the theory which the reader faced — the gaps, the underived equations, the unproven assertions, the dependence upon corollaries to practically incomprehensible theorems in Book I of the Principia and the ambiguities of these corollaries, the conjectures without explanations of their bases, the inconsistencies, and so forth. I explain why these apparent drawbacks are, historically considered, strengths of Newton's theory of the earth's shape, not weaknesses.  相似文献   

13.
14.
15.
16.
In the Transcendental Aesthetic, Kant explicitly rejects Newton’s absolutist position that space is an actually existing thing; however, Kant also concedes that the absolutist successfully preserves the a priori necessity that characterizes our geometrical knowledge of space. My goal in this paper is to explore why the absolutist can explain the a priori necessity of geometry by turning to Newton’s De Gravitatione, an unpublished text in which Newton addresses the essential features associated with our representation of space and the relationship between our geometrical investigation of space and our knowledge of the form of space that is a part of the natural order. Attention to Newton’s account of space in De Gravitatione offers insight into the sense in which absolutist space is a priori and reveals why, in the Aesthetic, Kant could concede a priori geometrical knowledge to his absolutist opponent. What I highlight in particular is that, by Kant’s standards, Newton employs the very constructive method of mathematics that secures the a priori necessity of geometry, even though, as an absolutist, and as emphasized in the arguments of the Aesthetic, Newton fails to provide a metaphysics of space that explains the success of his mathematical method.  相似文献   

17.
Although many historians of science acknowledge the extent to which Greek and Roman ideals framed eighteenth-century thought, many classical references in the texts they study remain obscure. Poems played an important role not only in spreading ideas about natural philosophy, but also in changing people’s perceptions of its value; they contributed to Newton’s swelling reputation as an English hero. By writing about Latin poetry, we focus on the intersection of two literary genres that were significant for eighteenth-century natural philosophy, but seem alien to modern science. We classify Augustan Latinate scientific poetry by considering the audiences for whom the poems were intended. We distinguish three broad categories. One type of poetry was circulated amongst gentlemanly scholars (we look particularly at Tripos verses, and laments for Queen Caroline). A second group comprised poetry written specifically to promote or criticise Newton and his books, particularly the Principia (we look at versions of Pope’s epitaph, and Halley’s Lucretian poem). After Newton’s death, a third type of poetry became increasingly significant, included in collections of poems rather than in texts of natural philosophy. Overall, we show how the classical past was vital for creating the scientific future.  相似文献   

18.
William Whiston was one of the first British converts to Newtonian physics and his 1696 New theory of the earth is the first full-length popularization of the natural philosophy of the Principia. Impressed with his young protégé, Newton paved the way for Whiston to succeed him as Lucasian Professor of Mathematics in 1702. Already a leading Newtonian natural philosopher, Whiston also came to espouse Newton’s heretical antitrinitarianism in the middle of the first decade of the eighteenth century. In all, Whiston enjoyed twenty years of contact with Newton dating from 1694. Although they shared so much ideologically, the two men fell out when Whiston began to proclaim openly the heresy that Newton strove to conceal from the prying eyes of the public. This paper provides a full account of this crisis of publicity by outlining Whiston’s efforts to make both Newton’s natural philosophy and heterodox theology public through popular texts, broadsheets and coffee house lectures. Whiston’s attempts to draw Newton out through published hints and innuendos, combined with his very public religious crusade, rendered the erstwhile disciple a dangerous liability to the great man and helps explain Newton’s eventual break with him, along with his refusal to support Whiston’s nomination to the Royal Society. This study not only traces Whiston’s successes in preaching the gospel of Newton’s physics and theology, but demonstrates the ways in which Whiston, who resolutely refused to accept Newton’s epistemic distinction between ‘open’ and ‘closed’ forms of knowledge, transformed Newton’s grand programme into a singularly exoteric system and drove it into the public sphere.  相似文献   

19.
20.
In this discussion paper, I seek to challenge Hylarie Kochiras’ recent claims on Newton’s attitude towards action at a distance, which will be presented in Section 1. In doing so, I shall include the positions of Andrew Janiak and John Henry in my discussion and present my own tackle on the matter (Section 2). Additionally, I seek to strengthen Kochiras’ argument that Newton sought to explain the cause of gravity in terms of secondary causation (Section 3). I also provide some specification on what Kochiras calls ‘Newton’s substance counting problem’ (Section 4). In conclusion, I suggest a historical correction (Section 5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号