首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
车津晶  万谦宏 《化学进展》2006,18(2):344-348
利用磁场诱导的微粒运动即磁泳对磁响应性粒子进行精细分离,是近年来发展起来的选择性分离细胞和高分子量核酸的有效技术。本文在阐明磁泳分离原理的基础上,介绍了磁泳分离的分流薄层分级技术、四极磁场流动分离技术和微芯片上的自由流磁泳分离技术的装置构造、工作原理及其在生物分离分析中的应用。  相似文献   

2.
利用磁场诱导的微粒运动即磁泳对磁响应性粒子进行精细分离,是近年来发展起来的选择性分离细胞和高分子量核酸的有效技术.本文在阐明磁泳分离原理的基础上,介绍了磁泳分离的分流薄层分级技术、四极磁场流动分离技术和微芯片上的自由流磁泳分离技术的装置构造、工作原理及其在生物分离分析中的应用.  相似文献   

3.
本文面向化学发光免疫检测,基于钕-铁-硼构建磁分离过程中不同环节所需的不同磁场,探索免疫复合物磁颗粒的快速无损分离技术。在磁颗粒受力及运动分析的基础上,给出了磁场的设计原则。将磁分离过程分解为三个环节,给出各机构的协调运动规划方案和时间要求。构建包含进给机构、洗涤机构及磁场结构体的磁分离模块,将所研究的磁分离技术用于课题组自行研发的Autolumis3000化学发光免疫检测仪,测试结果表明这种磁分离技术是可行的。  相似文献   

4.
趋磁性细菌-磁场处理含镍废水的研究   总被引:5,自引:0,他引:5  
应用趋磁性细菌-磁场技术处理Ni2 废水.首先进行了趋磁性细菌吸附试验,研究了pH、温度、时间、微生物量对吸附的影响.其次进行了趋磁性细菌的分离试验,考查了磁分离器中金属丝框的位置和磁场强度对磁分离过程的影响.试验结果表明,经这种方法处理后,出水中镍离子浓度很低.  相似文献   

5.
三组分抗原的磁分离及分离效率的SERS研究   总被引:1,自引:0,他引:1  
陈帅  姚建林  韩三阳  顾仁敖 《化学学报》2010,68(21):2151-2155
利用种子生长法制备了磁性γ-Fe2O3@Au核壳纳米粒子, 通过修饰抗体实现表面功能化, 利用抗原抗体间的特异性作用, 通过外加磁场对三组分抗原进行了逐个以及双抗原的磁分离, 采用基于表面增强拉曼光谱(SERS)技术的免疫检测方法对磁分离效率进行了评价, 并且研究了该磁分离和效率评估方法的极限工作浓度. 研究结果表明, 该磁免疫分离法能对三组分混合抗原中的任意组分进行很好的选择性分离, 而不影响其它抗原的存在, 使其分离后溶液中被分离抗原的浓度降低到SERS免疫检测限, 分离所能达到的极限抗体浓度约0.1 pg/mL.  相似文献   

6.
磁微球及其在生化分离分析中的应用   总被引:8,自引:0,他引:8  
景晓燕  李茹民  王鹏  王君  袁艺  朱果逸 《分析化学》1999,27(12):1462-1467
磁微球是以金属或金属氧化物为核,外面包被带有活性基团物质的一种新型生物分离材料。目前制备磁微球的方法有包埋法、聚合法、浸渍法、挤压法和生物合成法等。这种微球通过其活性基团与化学、生化和生物物质连接后,利用其顺磁性外加一定磁场可实现与介质分离。本文全面地介绍了磁微球的制备,详尽评述了其在免疫分析、核酸杂交分析、基因测序、细胞分离、酶的固定、受体分离等各个领域的应用。  相似文献   

7.
王玫  邓芳 《高分子通报》2014,(9):97-102
离子印迹技术是分子印迹技术的一个重要分支。离子印迹聚合物具有预定识别性,制备简单、价格低廉、稳定性好,对模板离子表现出较高的选择性和亲和性等优点,但离子印迹材料在完成吸附使命后从反应体系中分离困难。将离子印迹技术与磁性技术相结合制备的磁性离子印迹聚合物,不仅具有特定的分子识别位点,而且具有磁响应特性,在外加磁场作用下,容易分离回收。此文综述了近年来磁性离子印迹聚合物的研究进展状况,同时提出了目前该领域存在的问题和发展趋势。  相似文献   

8.
应用铜原位化学放大纳米金颗粒的信号增强特性, 并结合磁分离技术, 提出了一种高灵敏的溶出伏安免疫分析方法. 实验中以人IgG为模式蛋白质, 将抗体修饰的SiO2@Fe3O4核壳型磁性纳米颗粒和纳米金标抗体悬浊液混合, 用以均相免疫识别人IgG, 借助外加磁场分离纯化, 在免疫复合物悬浊液中加入铜增强试剂进行沉积放大反应, 再将铜用稀硝酸溶解并进行溶出伏安分析检测. 结果表明, 与基于固相反应的金属免疫分析法相比, 所提出的基于均相反应和磁分离原理的方法具有操作简单、分析时间短等优点. 该方法显示出明显增强的人IgG检测性能, 其线性检测范围为01~1000 ng/mL, 检出限为73 pg/mL. 此外, 将其用于实际样品的回收率测定, 结果令人满意.  相似文献   

9.
氨基纳米磁球免疫电化学法检测甲胎蛋白的研究   总被引:3,自引:0,他引:3  
程琼  彭图治  刘爱丽  何亮 《分析化学》2005,33(8):1068-1072
提出了一种利用纳米磁球免疫分离,进行酶催化电化学检测甲胎蛋白的新方法。在自制含有活性氨基的纳米磁球表面,用戊二醛固化甲胎蛋白(AFP)抗体,利用免疫夹心反应原理,捕获溶液中的AFP抗原和标记有辣根过氧化物酶的AFP抗体。在外加磁场的作用下,抗体-抗原结合物从样品溶液中分离,在含有邻氨基苯酚和过氧化氢的底液中,生成具有电活性的化合物3-氨基吩呃嗪,用灵敏的示差脉冲伏安法测定。响应电流与AFP抗原浓度分别在1~5和5~400βg/L范围内呈线性关系,检出限达0.5βg/L。实验表明,该方法具有分离效率高、测定时间短、抗干扰性强等优点,尤其适用于分析复杂生物样品。应用此法于人血清样品中AFP的检测,灵敏度显著高于酶联免疫吸附法。  相似文献   

10.
潘怡帆  张锋  高薇  孙悦伦  张森  练鸿振  茅力 《色谱》2022,40(11):979-987
元素的形态决定了其在环境和生物过程中的不同行为,形态分析正在被分析化学、环境化学、地球化学、生态学、农学和生物医学等众多学科所关注。环境和生物样品基质复杂、化学形态多样、含量低且易转化是元素形态分析面临的挑战,因此对元素形态的甄别、定量、生态毒性评价和生理功能研究需要对原生形态进行高选择性识别和高效率分离。固相萃取是一种有效应对以上难题的方法,但现有材料和方法远不能满足要求。离子印迹聚合物可与印迹金属离子特异性结合,具有准确、灵敏、可靠的特点,近年来在元素形态分离富集和分析检测方面得到了较为广泛的应用。鉴于非磁性吸附剂在固相萃取操作时,需要将分散在样品溶液中的吸附材料经过离心或过滤分离,操作比较繁琐费时,而磁性材料易被外部磁场快速分离,因此操作简便快速的磁固相萃取正成为元素形态分离富集中一种极具潜力的方法。这篇综述系统总结了离子印迹技术的最新进展,包括离子印迹技术的原理、离子印迹聚合物的制备方法,并根据元素形态分析中离子印迹磁固相萃取的发展现状,分析了离子印迹技术所面临的挑战,最后对元素形态分析中离子印迹技术的未来发展方向和策略提出了建议,提出开发基于有机-无机杂化聚合的多功能磁性离子印迹纳米复合物用于样品的前处理是建立识别选择性高、分离能力强、吸附容量大、形态稳定性好的形态分析方法的一种重要举措。  相似文献   

11.
Application of magnetic field on the separation and analysis of nano/microparticles is a growing subject in analytical separation chemistry. The migration phenomenon of a particle under inhomogeneous magnetic field is called magnetophoresis. The migration velocity depends on the magnetic susceptibility and the size of a particle. Therefore, magnetophoresis allows us to determine the magnetic susceptibility of particles, and to separate particles based on the magnetic properties. Magnetic separation of ferromagnetic particles in liquid has been utilized for a long time. For example, a high gradient magnetic separation under the non-uniform magnetic field generated by ferromagnetic mesh has been utilized in a wide region from chemical industry to bioscience. Recent progress on magnetic nanoparticles and microfluidic devices has made it possible to extend the range of application. Furthermore, it has been demonstrated that the very sensitive measurement of the magnetic susceptibility of microparticles can be performed by observing magnetophoretic velocity. In this review, we mainly introduce novel separation and detection methods based on magnetophoresis, which have been invented in this decade, and then new principles of particle migration under magnetic field are presented.  相似文献   

12.
重力场流分离作为最简单的一种场流分离技术,常用于分离微米级颗粒。选择两种不同粒径(20 μ m和6 μ m)的聚苯乙烯(PS)颗粒作为样品,通过改变载液中叠氮化钠浓度、混合表面活性剂的比例及载液流速,利用自行设计生产的重力场流分离(gravitational flow field-flow fractionation, GrFFF)仪器,对颗粒混合样品进行分离,得到了相关谱图与数据,考察了这3种因素对分离效果(保留比(R)、塔板高度(H))的影响。结果表明:20 μ m PS颗粒的R值均大于6 μ m PS颗粒的R值,H值均小于6 μ m颗粒的H值;PS颗粒的R值与H值均随着载液中叠氮化钠浓度的增加而增加;但随着载液流速的增加,R值增加,H值减小。该研究为GrFFF系统的开发及应用提供了重要的参考价值。  相似文献   

13.
In the present study, we numerically demonstrate an approach for separation of micro and sub-micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis. The dual streams are constructed by an intermediate sheath flow, after which the negative magnetophoretic force induced by an array of permanent magnets dominates the separation of diamagnetic particles. A simple and efficient numerical model is developed to calculate the motions of particles under the action of magnetic field and flow field. Effects of the average flow velocity, the ratio of sheath fluid flow to sample fluid flow, the number of the magnet pair as well as the position of magnet pair are investigated. The optimal parametric condition for complete separation is obtained through the parametric analysis, and the separation principle is further elucidated by the force analysis. The separation of smaller micro and sub-micro diamagnetic particles is finally demonstrated. This study provides an insight into the negative magnetophoretic phenomenon and guides the fabrication of feasible, low-cost diagnostic devices for sub-micro particle separation.  相似文献   

14.
Bi Y  Pan X  Chen L  Wan QH 《Journal of chromatography. A》2011,1218(25):3908-3914
Although magnetic field-flow fractionation (MgFFF) is emerging as a promising technique for characterizing magnetic particles, it still suffers from limitations such as low separation efficiency due to irreversible adsorption of magnetic particles on separation channel. Here we report a novel approach based on the use of a cyclic magnetic field to overcome the particle entrapment in MgFFF. This cyclic field is generated by rotating a magnet on the top of the spiral separation channel so that magnetic and opposing gravitational forces alternately act on the magnetic particles suspended in the fluid flow. As a result, the particles migrate transversely between the channel walls and their adsorption at internal channel surface is prevented due to short residence time which is controlled by the rotation frequency. With recycling of the catch-release process, the particles follow saw-tooth-like downstream migration trajectories and exit the separation channel at velocities corresponding to their sedimentation coefficients. A retention model has been developed on the basis of the combined effects of magnetic, gravitational fields and hydrodynamic flow on particle migration. Two types of core-shell structured magnetic microspheres with diameters of 6.04- and 9.40-μm were synthesized and used as standard particles to test the proposed retention theory under varying conditions. The retention ratios of these two types of particles were measured as a function of magnet rotation frequency, the gap between the magnet and separation channel, carrier flow rate, and sample loading. The data obtained confirm that optimum separation of magnetic particles with improved separation efficiency can be achieved by tuning rotation frequency, magnetic field gradient, and carrier flow rate. In view of the widespread applications of magnetic microspheres in separation of biological molecules, virus, and cells, this new method might be extended to separate magnetically labeled proteins or organisms for multiplex analyte identification and purification.  相似文献   

15.
Summary Several types of membrane have been tested for use in organic solvent flow field-flow fractionation in an asymmetric channel. The practical problems most commonly encountered were leakage of air and solvent through the support layer on which the membranes are cast, and unequal swelling of the membrane and the support layer in the organic solvent, leading to ridging of the membrane in the channel. Three types of membrane were found suitable for the separation of polystyrene standards with tetrahydrofuran as solvent. The best results were obtained with a fluoropolymer membrane. Fair agreement was found between theory and practice for the dependence of retention times on the relative molecular mass of the standards and on the flow regime. Use of scanning electron microscopy revealed that for a number of the membrane materials some pores were much larger than expected on the basis of the indicated molecular weight cut-off. Whereas these materials could not be used for the fractionation of soluble polymers, they could be applied with some success to the separation of solid latex and silica particles. A PTFE membrane could be used for the separation of latexes and silica particles suspended in acetonitrile as carrier liquid. In general, however, the retention times of these particles were shorter than theoretically predicted.  相似文献   

16.
 Magnetic fluids are used in many fields of application, such as material separation and biomedicine. Magnetic fluids consist of magnetic nanoparticles, which commonly display a broad distribution of magnetic and nonmagnetic parameters. Therefore, upon application only a small number of particles contribute to the desired magnetic effect. In order to optimize magnetic fluids for applications preference is given to methods that separate magnetic nanoparticles according to their magnetic properties. Hence, a magnetic method was developed for the fractionation of magnetic fluids. Familiar size-exclusion chromatography of two different magnetic fluids was carried out for comparison. The fractions obtained and the original samples were also magnetically characterized by magnetic resonance and magnetorelaxometry, two biomedical applications. The size-exclusion fractions are similar to those of magnetic fractionation, despite the different separation mechanisms. In this respect, magnetic fractionation has several advantages in practical use over size-exclusion chromatography: the magnetic method is faster and has a higher capacity. The fractions obtained by both methods show distinctly different magnetic properties compared to the original samples and are therefore especially suited for applications such as magnetorelaxometry. Received: 12 July 1999/Accepted in revised form: 9 November 1999  相似文献   

17.
Athansopoulou  A.  Karaiskakis  G. 《Chromatographia》1996,43(7-8):369-372
Summary Potential barrier gravitational field-flow fractionation (PBGFFF) is a new technique for the separation and characterization of colloidal materials. It consists in changing the potential energy of interaction between the colloidal particles and the channel wall by varying the solution ionic strength or the Hamaker constant and the surface potential of the particles. In this work the PBGFFF technique based on the particles' surface potential variation, by varying the pH, is presented. Polydisperse colloidal particles of the sulphide CuZnS (with molar ratio Cu/Zn-10/90) are used as a model sample. Comparison of the results obtained by PBGFFF with those given by conventional gravitational fieldflow fractionation and laser counter measurements, shows that one could use PBGFFF not only for the separation and characterization of colloidal materials, but also for the investigation of the interactions between colloids and solid surfaces.  相似文献   

18.
Forbes TP  Forry SP 《Lab on a chip》2012,12(8):1471-1479
Immunomagnetic isolation and magnetophoresis in microfluidics have emerged as viable techniques for the separation, fractionation, and enrichment of rare cells. Here we present the development and characterization of a microfluidic system that incorporates an angled permanent magnet for the lateral magnetophoresis of superparamagnetic beads and labeled cell-bead complexes. A numerical model, based on the relevant transport processes, is developed as a design tool for the demonstration and prediction of magnetophoretic displacement. We employ a dimensionless magnetophoresis parameter to efficiently investigate the design space, gain insight into the physics of the system, and compare results across the vast spectrum of magnetophoretic microfluidic systems. The numerical model and theoretical analysis are experimentally validated by the lateral magnetophoretic deflection of superparamagnetic beads and magnetically labeled breast adenocarcinoma MCF-7 cells in a microfluidic device that incorporates a permanent magnet angled relative to the flow. Through the dimensionless magnetophoresis parameter, the transition between regimes of magnetophoretic action, from hydrodynamically dominated (magnetic deflection) to magnetically dominated (magnetic capture), is experimentally identified. This powerful tool and theoretical framework enables efficient device and experiment design of biologically relevant systems, taking into account their inherent variability and labeling distributions. This analysis identifies the necessary beads, magnet configuration (orientation), magnet type (permanent, ferromagnetic, electromagnet), flow rate, channel geometry, and buffer to achieve the desired level of magnetophoretic deflection or capture.  相似文献   

19.
Recently, magnetic split-flow thin (SPLITT) fractionation has been developed to separate macromolecules, colloids, cells and particles. However, the previous theory, developed for an infinitely long channel, needs to be improved to consider the flow transit regimes at both inlet and outlet. In this paper, we describe a new approach to optimising flow-rates for particle separation which considers the effect of flow transit region. Surprisingly, the critical particle migration velocities derived by the present theory are identical to the previous simplified theory. Therefore, the previous simplified theory may have wider application than might have been expected. As a test of our theory, a numerical simulation based on solving Navier-Stokes equations has also been carried out for a magnetic SPLITT device. The trajectory of a particle with the critical migration velocity is exactly as expected by our theory. Following experimental validation, this work will facilitate the design of new SPLITT fractionation systems with smaller aspect ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号