首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glucose transporter, GLUT 1, was purified from erythrocyte membranes and incorporated into vesicles of erythrocyte lipids. These protein-containing vesicles were studied with differential scanning calorimetry. It was found that the protein underwent an irreversible denaturation at 68.5 +/- 0.2 degreesC (at a scan rate of 0.25 degreesC/min) which was shifted to 72.6 +/- 0.2 degreesC in the presence of 500 mM D-glucose, while 500 mM L-glucose or 10 microM cytochalasin B did not produce a significant shift. The calorimetric enthalpy was found to be 150 kcal/mol, independent of the presence of D-glucose. On a weight basis this value is lower than that for soluble proteins, but it is comparable to values obtained with other integral membrane proteins. The van't Hoff enthalpy is similar to the calorimetric enthalpy, within the experimental error, indicating that the transition is not likely to be cooperative. The activation energy is estimated from both the scan rate dependence of the transition temperature and from the shape of the DSC curve. The presence of 500 mM D-glucose slightly decreases the activation energy. It is concluded that the shift to a higher denaturation transition temperature in the presence of D-glucose is not a result of increased kinetic stability of GLUT 1.  相似文献   

2.
13C and 1H NMR spectroscopy was used to investigate the metabolism of L-lactate and D-glucose in C6 glioma cells. The changing of lactate and glucose concentration in the extracellular medium of C6 glioma cells incubated with 5.5 mM glucose and 11 mM lactate indicated a net production of lactate as the consequence of an active aerobic glycolysis. The 13C enrichments of various metabolites were determined after 4-h cell incubation in media containing both substrates, each of them being alternatively labeled in the form of either [3-13C]L-lactate or [1-13C]D-glucose. Using 11 mM [3-13C]L-lactate, the enrichment of glutamate C4, 69%, was found higher than that of alanine C3, 32%, when that of acetyl-CoA C2 was 78%. These results indicated that exogenous lactate was the major substrate for the oxidative metabolism of the cells. Nevertheless, an active glycolysis occurred, leading to a net lactate production. This lactate was, however, metabolically different from the exogenous lactate as both lactate species did not mix into a unique compartment. The results were actually consistent with the concept of the existence of two pools of both lactate and pyruvate, wherein one pool was closely connected with exogenous lactate and was the main fuel for the oxidative metabolism, and the other pool was closely related to aerobic glycolysis.  相似文献   

3.
An obvious difficulty of the study of binding of volatile anesthetics to proteins is to prevent loss of the ligand during the procedure. A novel NMR tube was designed that consists of concentric double cylinders which slide each other under sealed condition. A gas space is left in the tube to measure the free anesthetic concentration in the gas phase, which is in equilibrium with the solution. The enthalpy change of anesthetic transfer from water to BSA, deltaH(w-->r) was -40 kJ x mol(-1). The Gibbs free energy deltaG(w-->r) was -14.0 kJ x mol(-1) at 283 K (K(D) = 2.6 mM) and increased to -11.6 kJ x mol(-1) at 310 K (K(D) = 10.9 mM). The maximum binding site (Bmax) was 19.3 at 10 degrees C and increased to 34.5 at 37 degrees C. The entropy change, deltaS(w-->r) was -92 J x mol(-1) x K(-1) and was almost constant in the temperature range 10 approximately 37 degrees C. Contrary to the general consensus that hydrophobic interaction is entropy-driven, the binding of halothane to BSA was enthalpy-driven, compensating the opposing effect of deltaS with negative deltaH at the biologically meaningful temperature range. Possible cause of the negative deltaS relating to the conformational change of BSA is discussed.  相似文献   

4.
To determine if lactate is produced during aerobic metabolism in peripheral nerve, we incubated pieces of rabbit vagus nerve in oxygenated solution containing D-[U-14C]glucose while stimulating electrically. After 30 min, nearly all the radioactivity in metabolites in the nerve was in lactate, glucose 6-phosphate, glutamate, and aspartate. Much lactate was released to the bath: 8.2 pmol (microg dry wt)(-1) from the exogenous glucose and 14.2 pmol (microg dry wt)(-1) from endogenous substrates. Lactate release was not increased when bath PO2 was decreased, indicating that it did not come from anoxic tissue. When the bath contained [U-14C]lactate at a total concentration of 2.13 mM and 1 mM glucose, 14C was incorporated in CO2 and glutamate. The initial rate of formation of CO2 from bath lactate was more rapid than its formation from bath glucose. The results are most readily explained by the hypothesis that has been proposed for brain tissue in which glial cells supply lactate to neurons.  相似文献   

5.
The applicability of a complement consumption assay as a means by which to detect IgG aggregates and immune complexes in serum was examined. Both heavy (greater than or equal to 19S) and intermediate (11-17S) IgG aggregates were detected and the sensitivity of the assay was greater than or equal to 10 mug aggregated IgG/ml. BSA anti-BSA complexes, formed in slight antibody excess, were detected at a BSA concentration of 200 ng/ml. NHS stored at 4degreesC for greater than or equal to 2-3 weeks or at -20degreesC for more than 3 months developed distinct anticomplementarity (AC). This background AC, due to IgG aggregate formation, was reduced by heating the serum at 56degreesC for 50 min prior to testing. A similar reduction of AC and C1q fixation was observed when IgG aggregated at 61degreesC or 63degreesC was heated further at 56degreesC for 50 min. The abatement of AC could not be correlated to a change in IgG aggregation size. In contrast, AC of preformed antigen-antibody complexes was not reduced by this heat treatment.  相似文献   

6.
The experiments reported in this paper were designed to evaluate some of the characteristics of anion transport processes during fluid absorption from superficial proximal straight tubules isolated from rabbit kidney. We measured net chemical C1- flux during fluid absorption from tubules perfused and bathed with Krebs-Ringer buffers containing 113.6 mM C1-, 10 mM acetate, and 25 mM HCO-/3 at pH 7.4; assessed the effects of carbonic anhydrase inhibitors on net fluid absorption in the presence and absence of CO2; and evaluated the influx and efflux coefficients for [14C]-acetate transport at 37degreesC, at 21degreesC, and in the presence of carbonic anhydrase inhibitors. The experimental data shown that, for this nephron segment, net C1- flux accompanies approximately 27.5% of net Na+ absorption; and net C1- absorption may be accounted for by a passive transport process, primarily diffusional in nature. Fluid absorption in this nephron segment is reduced 40-60% by carbonic anhydrase inhibitors, but only when the tubules are exposed to 95% O2-5% CO2 rather than 100% O2. Thus, it seems probably that approximately half of Na+ absorption in these tubules may be rationalized in terms of a carbonic anhydrase-dependent CO2 hydration process. In addition, there may occur in these isolated proximal tubules an acetazolamide-insensitive moiety of HCO-/3 absorption comparable to that observed for proximal tubules in vivo. Finally, we provide evidence that net efflux of luminal acetate is due to metabolic energy-dependent processes other than CO2 hydration and may, under appropriate conditions, account for approximately one-fourth of net Na+ absorption.  相似文献   

7.
alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors are critically involved in several forms of synaptic plasticity proposed to be neural substrates for learning and memory, e.g., long-term potentiation and long-term depression (LTD). The present study was designed to determine changes in cerebellar AMPA receptors following classical conditioning of the eyeblink-nictitating membrane response (NMR) in the rabbit. Quantitative autoradiography was used to assess changes in ligand binding properties of cerebellar AMPA receptors following NMR conditioning elicited by pairing electrical stimulation of the pontine nuclei with an airpuff to the eye. [3H]AMPA and [3H]-6-cyano-7-nitroquinoxaline-2,3-dion (CNQX) binding were determined following preincubation of frozen-thawed brain tissue sections at 0 or 35 degreesC. With 0 degreesC preincubation, no significant differences in [3H]AMPA binding to cerebellar AMPA receptors were seen between any of the experimental groups tested. In contrast, preincubation at 35 degreesC revealed significant decreases in [3H]AMPA binding to the trained side of the cerebellar cortex resulting from paired presentations of the conditioned and the unconditioned stimuli, while unpaired presentations of the stimuli resulted in no significant effect. With 35 degreesC preincubation, there were no significant differences in [3H]CNQX binding between any of the experimental groups and no significant differences in [3H]AMPA binding in the untrained side of the cerebellum. These results indicate that NMR conditioning is associated with a selective modification of AMPA-receptor properties in brain structures involved in the storage of the associative memory. Furthermore, they support the hypothesis that cerebellar LTD, resulting from decreased synaptic efficacy at parallel fiber-Purkinje cell synapses mediated by a change in AMPA-receptor properties, is a form of synaptic plasticity that supports this type of learning.  相似文献   

8.
Changes in the brain lactate concentration in cerebral extracellular fluid (ECF) during intravenous infusion of glucose and local administration of glucose were investigated in adult, conscious, unrestrained rats, with a microdialysis probe in the posterior hippocampus. The rats were infused intravenously with either 25% sucrose solution or 25% glucose solution at a rate of 16.6 microliters.min-1.100 g-1 for three hours. The blood glucose concentration reached 17.0 +/- 2.6 mM at the end of the glucose infusion, and brain ECF glucose showed a parallel change with the blood glucose concentration and increased to 2.37 +/- 0.30 mM. However, blood and brain ECF glucose concentrations did not change in animals infused with the sucrose solution. On the other hand, the blood lactate concentration in the glucose-infused group also increased from 0.93 +/- 0.18 mM to 2.85 +/- 0.39 mM at the end of the glucose infusion, which was significantly higher than that measured in the sucrose-infused group. The blood lactate level in the glucose-infused group returned to the basal level by the end of the experiment. Brain ECF lactate concentrations increased from 1.21 +/- 0.06 mM to 1.69 +/- 0.11 mM in glucose-infused animals, but did not change in the sucrose-infused animals. The brain ECF lactate concentration showed a positive correlation with the brain ECF glucose concentration in glucose-infused animals. Another group of rats was administered glucose locally for 90 min after substitution of artificial cerebrospinal fluid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Binding of ATP to bovine serum albumin was shown by ultrafiltration and NMR. The binding was pH dependent. Scatchard analysis revealed that at pH 5.4, 6.4 and 7.4, dissociation constant Kd was 13, 40 and 120 microM, respectively, and no binding was observed at pH 8.4. The binding stoichiometry was 1:1 for all pH. Dimer of BSA did not bind ATP. From chemical shifts of 31P-NMR, Kd was estimated to be 15 microM at pH 5.4, which is very close to that determined by ultrafiltration. While adenosine did not interfere with the binding. GTP, dCTP, ADP, UTP, AMP, phosphate and pyrophosphate were competitive inhibitors and their inhibition constants Ki were 25, 32, 36, 50, 130, 1000 and 186 microM, respectively. Fatty acids such as lauric acid and palmitic acid did not interfere with the binding. Warfarin was a non-competitive inhibitor. Cl- competitively inhibited the binding, and the inhibition constant was 20 mM. The dissociation constants of the Cl- binding were reported to be 0.42 mM for the first binding site, 10-5 mM for the second and 303-143 mM for the third [G. Scatchard, W.T. Yap, J. Am. Chem. Soc., 86 (1964) 3434; G. Scatchard et al., J. Am. Chem. Soc. 79 (1957) 12]. This suggests that the ATP binding site may be the second Cl- binding site.  相似文献   

10.
Recombinant alpha1beta2gamma2L GABA(A) receptor channels, transiently expressed in HEK 293 cells, were investigated using the patch-clamp technique in combination with a device for ultra-fast solution exchange. The dose-response relationship revealed an EC50 of 11.6 +/- 0.9 microM and saturated with 3 mM GABA. The slope between 0.001 and 0.01 mM GABA was 2.2 +/- 0.4, indicating at least three binding sites for GABA. The rise time decreased from about 120 ms at 0.001 mM GABA to about 0.8 ms at 10 mM GABA. Single channel openings were grouped in bursts with an average duration of 10.3 +/- 3.0 ms. More than 95% of the current was represented by a single channel slope conductance of about 29 pS.  相似文献   

11.
The role of chloride concentration gradients in proximal NaCl and water reabsorption was examined in superficial proximal tubules of the rat by using perfusion and collection techniques. Reabsorptive rates (Jv), chloride concentrations, and transtubular potential difference were measured during perfusion with solutions (A) simulating an ultrafiltrate of plasma; (B) similar to (A) except that 20 meq/liter bicarbonate was replaced with acetate; (C) resembling late proximal fluid (glucose, amino acid, acetate-free, low bicarbonate, and high chloride); and (D) in which glucose and amino acids were replaced with raffinose and bicarbonate was partially replaced by poorly reabsorbable anions (cyclamate,sulfate, and methyl sulfate). In tubules perfused with solutions A and B, Jv were 2.17 and 2.7 nl mm-1 min-1 and chloride concentrations were 131.5 +/- 3.1 and 135 +/- 395 meq/liter, respectively, indicating that reabsorption is qualitatively similar to free-flow conditions and that acetate adequately replaces bicarbonate. With solution C, Jv was 2.10 nl mm-1 min-1 and potential difference was +1.5 +/- 0.2 mV, indicating that the combined presence of glucose, alanine, acetate, and bicarbonate per se is not an absolute requirement. Fluid reabsorption was virtually abolished when tubules were perfused with D solutions; Jv was not significantly different from zero despite sodium and chloride concentrations similar to plasma; chloride concentration was 110.8 +/- 0.2 meq/liter and potential difference was -0.98 mV indicating that chloride was close to electrochemical equilibrium. These results suggest the importance of the chloride gradient to proximal tubule reabsorption in regions where actively reabsorbable solutes (glucose, alanine, acetate, and bicarbonate) are lacking and provide further evidence for a passive model of NaCl and water transport.  相似文献   

12.
Hen egg-white lysozyme dissolved in glycerol containing 1% water was studied by using CD and amide proton exchange monitored by two-dimensional 1H NMR. The far- and near-UV CD spectra of the protein showed that the secondary and tertiary structures of lysozyme in glycerol were similar to those in water. Thermal melting of lysozyme in glycerol followed by CD spectral changes indicated unfolding of the tertiary structure with a Tm of 76.0 +/- 0.2 degreesC and no appreciable loss of the secondary structure up to 85 degreesC. This is in contrast to the coincident denaturation of both tertiary and secondary structures with Tm values of 74.8 +/- 0.4 degreesC and 74.3 +/- 0.7 degreesC, respectively, under analogous conditions in water. Quenched amide proton exchange experiments revealed a greater structural protection of amide protons in glycerol than in water for a majority of the slowly exchanging protons. The results point to a highly ordered, native-like structure of lysozyme in glycerol, with the stability exceeding that in water.  相似文献   

13.
Solid-state phosphorus (31P) and deuterium (2H) nuclear magnetic resonance (NMR) spectroscopy over the temperature range of 25-50 degreesC were used to investigate bilayered micelles (bicelles) composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1, 2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in the presence of either the anionic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol (DMPG) or the cationic lipid 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP). The 31P-NMR spectra demonstrate that bicellar structures form with DMPG/DMPC ratios ranging from 0 to 50/50 and with DMTAP/DMPC ratios from 0 to 40/60, while the overall concentration of DHPC remains constant. The formation of bicelles containing charged amphiphiles is contingent upon the presence of NaCl, with 50 mM NaCl being sufficient for bicelle formation at all concentrations of charged amphiphile investigated, while 150 mM NaCl affords better resolution of the various 31P-NMR resonance signals. The 2H-NMR spectra demonstrate that the quadrupolar splittings (Deltanu) of head group-deuterated DMPC change inversely as a function of the amount of negative versus positive charge present, and that the changes for deuterons on the alpha-carbon are opposite in sense to those for deuterons on the beta-carbon. This indicates that head group-deuterated phosphatidylcholine functions as a molecular voltmeter in bicelles in much the same fashion as it does in spherical vesicles.  相似文献   

14.
Elevated tissue lactate concentrations typically found in tumors can be measured by in vivo nuclear magnetic resonance (NMR) spectroscopy. In this study, lactate turnover in rat C6 glioma was determined from in vivo 1H NMR measurements of [3-13C]lactate buildup during steady-state hyperglycemia with [1-13C]glucose. With this tumor model, a narrow range of values was observed for the first-order rate constant that describes lactate efflux, k2 = 0.043 +/- 0.007 (n = 12) SD min-1. For individual animals, the standard error in k2 was small (< 18%), which indicated that the NMR data fit the kinetic model well. Lactate measurements before and after infusing [1-13C]glucose showed that the majority of the tumor lactate pool was metabolically active. Signals from 13C-labeled glutamate in tumors were at least 10-fold smaller than the [3-13C]lactate signal, whereas spectra of the contralateral hemispheres revealed the expected labeling of [4-13C]glutamate, as well as [2-13C] and [3-13C]glutamate, which indicates that label cycled through the tricarboxylic acid cycle in the brain tissue. Lack of significant 13C labeling of glutamate was consistent with low respiratory metabolism in this glioma. It is concluded that lactate in rat C6 glioma is actively turning over and that the kinetics of lactate efflux can be quantified noninvasively by 1H NMR detection of 13C label. This noninvasive NMR approach may offer a valuable tool to help evaluate tumor growth and metabolic responsiveness to therapies.  相似文献   

15.
NMR analysis of d(C4T) showed the slow exchange between two distinct tetramers (each fully symmetric) in solution. For one tetramer, NOE cross-peak patterns characteristic of an i-motif structure (H1'-H1' and H6-H1'/H1'-H6) were observed between C1 and T5, indicating that this tetramer takes a completely intercalated conformation where the T5 residue is stacked on the C1.C1(+) pair of the other duplex (S-form). The other was found to be a tetramer in which one of the duplexes is shifted by one nucleotide unit (R-form), resulting in nonstacking 3' end thymidine residues and an equal number of stacked C.C+ pairs to that of the S-form. The same spectral features were observed for d(C3T) but neither for d(TC3) nor d(TC4), indicative of the critical role of the position of the thymidine residue in the tetrad isomerization. From NMR denaturation profiles, the S-forms were found to be more stable than the R-forms, and the linear relationship between the logarithm of the equilibrium constant (K = [tetramer]/[single]4) and the inverse of temperature (1/T) was confirmed for both forms, indicating conformity to the two-state transition model. Both enthalpy and entropy values of the formation of the S-form from four single strands were more negative than those of the R-form. The enthalpy term should contribute to the stabilization of the S-forms at low temperatures. The difference of the free energy values [DeltaG degrees(S-form) - DeltaG degrees(R-form)] was found to be -2.1 and -2.7 kJ.mol-1 at 20 degreesC for d(C4T) and d(C3T), respectively, explaining the higher stability of the S-forms. With increasing temperature, these two topologies were found to comparably exist at equilibrium in solution with slow exchange via dissociation to the single strands. A biological role of this topological isomerization is also suggested.  相似文献   

16.
13C and 1H nuclear magnetic resonance spectroscopy (NMR) was used to investigate the metabolism of L-lactate and D-glucose in C6 glioma cells. The 13C enrichment of cell metabolites was examined after a 4-h incubation in media containing 5.5 mM glucose and 11 mM lactate, each metabolite being alternatively labelled with either [1-13C]D-glucose or [3-13C]L-lactate. The results indicated that exogenous lactate was the major substrate for oxidative metabolism. They were consistent with the concept of the existence of 2 pools of both lactate and pyruvate, of which 1 pool was closely connected with exogenous lactate and oxidative metabolism, and the other pool was closely related to glycolysis and disconnected from oxidative metabolism. The molecular basis of this behaviour could be related to different locations for the lactate dehydrogenase isoenzymes, as suggested by their immunohistochemical labelling.  相似文献   

17.
Control of oxidative metabolism was studied using 13C NMR spectroscopy to detect rate-limiting steps in 13C labeling of glutamate. 13C NMR spectra were acquired every 1 or 2 min from isolated rabbit hearts perfused with either 2.5 mM [2-13C]acetate or 2.5 mM [2-13C]butyrate with or without KCl arrest. Tricarboxylic acid cycle flux (VTCA) and the exchange rate between alpha-ketoglutarate and glutamate (F1) were determined by least-square fitting of a kinetic model to NMR data. Rates were compared to measured kinetics of the cardiac glutamate-oxaloacetate transaminase (GOT). Despite similar oxygen use, hearts oxidizing butyrate instead of acetate showed delayed incorporation of 13C label into glutamate and lower VTCA, because of the influence of beta-oxidation: butyrate = 7.1 +/- 0.2 mumol/min/g dry wt; acetate = 10.1 +/- 0.2; butyrate + KCl = 1.8 +/- 0.1; acetate + KCl = 3.1 +/- 0.1 (mean +/- SD). F1 ranged from a low of 4.4 +/- 1.0 mumol/min/g (butyrate + KCl) to 9.3 +/- 0.6 (acetate), at least 20-fold slower than GOT flux, and proved to be rate limiting for isotope turnover in the glutamate pool. Therefore, dynamic 13C NMR observations were sensitive not only to TCA cycle flux but also to the interconversion between TCA cycle intermediates and glutamate.  相似文献   

18.
Excitatory amino acids are an important cause of cell death in the hypoxic and ischaemic brain. Neuronal glutamate stores are depleted rapidly in hypoxia, but alanine production rises under such conditions and has been suggested to be a potential precursor of glutamate. To test this hypothesis, we have investigated amino acid metabolism using 13C NMR with superfused guinea pig cortical slices subjected to varying degrees of hypoxia. During severe hypoxia, brain slices metabolising 5 mM [2-(13)C]pyruvate exported [2-(13)C]alanine into the superfusion fluid. The metabolic fate of alanine during normoxia and hypoxia was tested by superfusion of brain slices with 10 mM glucose and 2 mM [2-(13)C,15N]alanine. Metabolism of exogenous alanine leads to the release of aspartate into the superfusion fluid. The pattern of labelling of aspartate indicated that it was synthesised via the glial-specific enzyme pyruvate carboxylase. 13C-labelled glutamate was produced with both normoxia and hypoxia, but concentrations were 30-fold lower than for labelled aspartate. Thus, although substantial amounts of glutamate are not synthesised from alanine in hypoxia, there is significant production of aspartate, which also may have deleterious effects as an excitatory amino acid.  相似文献   

19.
Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters (Weber, 1984a, b), the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters--intermediates capable of forming peptides (Weber and Orgel 1979). A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 degrees C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.  相似文献   

20.
The interaction of recombinant ascorbate peroxidase (APX) with its physiological substrate, ascorbate, has been studied by electronic and NMR spectroscopies, and by phenylhydrazine-modification experiments. The binding interaction for the cyanide-bound derivative (APX-CN) is consistent with a 1:1 stoichiometry and is characterised by an equilibrium dissociation binding constant. Kd, of 11.6 +/- 0.4 microM (pH 7.002, mu = 0.10 M, 25.0 degrees C). Individual distances between the non-exchangeable substrate protons of APX-CN and the haem iron were determined by paramagnetic-relaxation NMR measurements, and the data indicate that the ascorbate binds 0.90-1.12 nm from the haem iron. The reaction of ferric APX with the suicide substrate phenylhydrazine yields predominantly (60%) a covalent haem adduct which is modified at the C20 carbon, indicating that substrate binding and oxidation is close to the exposed C20 position of the haem, as observed for other classical peroxidases. Molecular-modelling studies, using the NNM-derived distance restraints in conjunction with the crystal structure of the enzyme [Patterson, W. R. & Poulos, T. L. (1995) Biochemistry 34, 4331-4341], are consistent with binding of the substrate close to the C20 position and a possible functional role for alanine 134 (proline in other class-III peroxidases) is implicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号