首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this paper two torsional impact problems are considered. The first problem deals with the solution of a layer bonded to an elastic half-space when the layer is driven by the torsional impact over a bonded rigid circular disc. In the second problem sudden torsion by a rigid disc attached over the plane face of a circular cylinder is considered and the rest of the plane surface of the cylinder is stress free. The cylinder is bonded to the half-space, making use of Laplace and Hankel transforms the solution of each problem is reduced into Fredholm integral equations of the second kind. A numerical Laplace inversion technique is then used to recover the time depencence of the solution. The numerical values for the applied torque at the surface of rigid disc are calculated for each problem and then are displayed graphically.  相似文献   

2.
The approximate analytical solution of a quasi-static plane problem of the theory of viscoelasticity is obtained under finite strains. This is the problem of the stress–strain state in an infinite body with circular viscoelastic inclusion. The perturbation technique, Laplace transform, and complex Kolosov–Muskhelishvili’s potentials are used for the solution. The numerical results are presented. The nonlinear effects and the effects of viscosity are estimated.  相似文献   

3.
Green’s functions of Laplace problems containing circular boundaries are solved by using analytical and semi-analytical approaches. For the analytical solution, we derive the Green’s function using the bipolar coordinates. Based on the semi-analytical approach of image method, it is interesting to find that the two frozen images for the eccentric annulus using the image method are located on the two foci in the bipolar coordinates. This finding also occurs for the cases of a half plane with a circular hole and an infinite plane containing two circular holes. The image method can be seen as a special case of the method of fundamental solutions, which only at most four unknown strengths are required to be determined. The optimal locations of sources in the method of fundamental solutions can be captured using the image method and they are dependent on the source location and the geometry of problems. Three illustrative examples were demonstrated to verify this point. Results are satisfactory.  相似文献   

4.
This paper considers the problem of an infinite, isotropic viscoelastic plane containing an arbitrary number of randomly distributed, non-overlapping circular holes and isotropic elastic inclusions. The holes and inclusions are of arbitrary size. All inclusions are assumed to be perfectly bonded to the material matrix but the elastic properties of the inclusions can be different from one another. The Kelvin model is employed to simulate the viscoelastic plane. The numerical approach combines a direct boundary integral method for a similar problem of an infinite elastic plane containing multiple circular holes and elastic inclusions described in [Crouch SL, Mogilevskaya SG. On the use of Somigliana's formula and Fourier series for elasticity problems with circular boundaries. Int J Numer Methods Eng 2003;58:537–578], and a time-marching strategy for viscoelastic material analysis described in [Mesquita AD, Coda HB, Boundary integral equation method for general viscoelastic analysis. Int J Solids Struct 2002;39:2643–2664]. Several numerical examples are given to verify the approach. For benchmark problems with one inclusion, results are compared with the analytical solution obtained using the correspondence principle and analytical Laplace transform inversion. For an example with two holes and two inclusions, results are compared with numerical solutions obtained by commercial finite element software—ANSYS. Benchmark results for a more complicated example with 25 inclusions are also given.  相似文献   

5.
Y. Shindo 《Acta Mechanica》1988,73(1-4):147-162
Summary The impact response of a crack in a semi-infinite body with a surface layer which is subjected to antiplane shear deformation is considered in this study. The semi-infinite body contains a crack near an interface. Using Laplace and Fourier transforms, the case of a crack perpendicular to the interface is reduced to a set of triple integral equations in the Laplace transform plane. The solution to the triple integral equations is then expressed in terms of a singular integral equation of the first kind. A numerical Laplace inversion routine is used to recover the time dependence of the solution. The dynamic stress intensity factors at the crack tips are obtained for several values of time, material constants, and geometrical parameters.With 8 Figures  相似文献   

6.
Prof. S. Itou 《Acta Mechanica》1997,121(1-4):153-164
Summary In this paper, the mixed boundary value problem for two rectangular cracks,which are embedded in a half-space, is analyzed under the action of an impact load. The cracks are situated perpendicular to the plane surface of the half space. The wave front of the incident stress impinges on the cracks at right angles to their surfaces. In the Laplace transform domain, the boundary conditions at the plane surface are satisfied using the Fourier transform technique, while those at the surfaces of the cracks are satisfied using the Schmidt method. The stress intensity factors defined in the Laplace transform domain are inverted in the physical space with the aid of a numerical method.  相似文献   

7.
H. N. Wang  G. H. Nie 《Acta Mechanica》2010,210(3-4):315-330
An analytical solution is developed in this paper for viscoelastic axisymmetric plane problems under stress or displacement boundary condition involving time-dependent boundary regions using the Laplace transform. The explicit expressions are given for the radial and circumferential stresses under stress boundary condition and the radial displacement under displacement boundary condition. The results indicate that the two in-plane stress components and the displacement under corresponding boundary conditions have no relation with material constants. The general form of solutions for the remaining displacement or stress field is expressed by the inverse Laplace transform concerning two relaxation moduli. As an application to deep excavation of a circular tunnel or finite void growth, explicit solutions for the analysis of a deforming circular hole in both infinite and finite planes are given taking into account the rheological characteristics of the rock mass characterized by a Boltzmann or Maxwell viscoelastic model. Numerical examples are given to illustrate the displacement and stress response. The method proposed in this paper can be used for analysis of earth excavation and finite void growth.  相似文献   

8.
We consider a problem for the Laplace equation in a circular sector wherein heat exchange takes place on the sides of the sector in accordance with Newton's law and a temperature distribution is specified on the circular arc.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 54, No. 1, pp. 133–139, January, 1988.  相似文献   

9.
Impact response of a cracked soft ferromagnetic medium   总被引:2,自引:0,他引:2  
A solution is given for the problem of an infinite soft ferromagnetic solid containing a central crack subjected to normal impact load. The solid is permeated by a uniform magnetostatic field normal to the crack surface. Laplace and Fourier transforms are employed to reduce the transient problem to the solution of integral equations in the Laplace transformed plane. A numerical Laplace inversion technique is used to compute the values of the dynamic stress-intensity factor, and the results are compared with the corresponding elastodynamic values to reveal the influence of magnetic field on the dynamic stress-intensity factor. The dynamic stress intensity factor is found to increase with increasing values of the magnetic field.With 4 Figures  相似文献   

10.
Impact response of a finite crack in an orthotropic piezoelectric ceramic   总被引:1,自引:0,他引:1  
Y. Shindo  F. Narita  E. Ozawa 《Acta Mechanica》1999,137(1-2):99-107
Summary The transient dynamic stress intensity factor and dynamic energy release rate were determined for a cracked piezoelectric ceramic under normal impact in this study. A plane step pulse strikes the crack and stress wave diffraction takes place. Laplace and Fourier transforms are employed to reduce the transient problem to the solution of a pair of dual integral equations in the Laplace transform plane. The solution of the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. A numerical Laplace inversion technique is used to compute the values of the dynamic stress intensity factor and the dynamic energy release rate for some piezoelectric ceramics, and the results are graphed to display the electroelastic interactions.  相似文献   

11.
Complex variable integral equations for linear viscoelasticity derived in Part I [Huang Y, Mogilevskaya SG, Crouch SL. Complex variable boundary integral method for linear viscoelasticity. Part I—basic formulations. Eng Anal Bound Elem 2006; in press, doi:10.1016/j.enganabound.2005.12.007.] are employed to solve the problem of an infinite viscoelastic plane containing a circular hole. The viscoelastic material behaves as a Boltzmann model in shear and its bulk response is elastic. Constant or time-dependent stresses are applied at the boundary of the hole, or, if desired, at infinity. Time-dependent variables on the circular boundary (displacements or tractions in the direct formulation of the complex variable boundary integral method or unknown complex density functions in the indirect formulations) are represented by truncated complex Fourier series with time-dependent coefficients and all the space integrals involved are evaluated analytically. Analytical Laplace transform and its inversion are adopted to accomplish the evaluation of the associated time convolutions. Several examples are given to demonstrate the validity and reliability of the method. Generalization of the approach to the problems with multiple holes is discussed.  相似文献   

12.
Dynamic stresses around two coplanar Griffith cracks in an orthotropic layer sandwiched between two elastic half-planes are determined. To the surfaces of the cracks, an internal pressure is applied suddenly. Application of the Fourier and Laplace transforms reduces the problem to the solution of a pair of dual integral equations in the Laplace transform plane. To solve these equations, the crack surface displacement is expanded in a series of functions which are zero outside of the cracks. The unknown coefficients accompanied in that series are solved with the aid of the Schmidt method. The stress intensity factors defined in the Laplace transform plane are inverted numerically in the physical plane. Numerical calculations are carried out for the case that the layer of carbon fiber is sandwiched by the two elastic half-planes of plastic.  相似文献   

13.
Summary The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.  相似文献   

14.
Most solutions for electromagnetic diffraction by a circular aperture in a perfectly conducting plane screen are for an incident homogeneous (propagating) plane wave. When the aperture is electrically small (dimensions small compared to the wavelength), the well-known transmission coefficient behaves as the fourth power of the diameter/wavelength. We consider the case in which the incident field is an inhomogeneous (evanescent) plane wave. Numerical calculations for the electrically small circular aperture show that the transmission coefficient for an inhomogeneous plane wave can be substantially greater than for a homogeneous plane wave at the same frequency. This observation may be helpful in explaining the increased transmission recently reported for electrically small apertures in plane screens with modifications. The numerical calculations for the electrically small aperture are in agreement with results from approximate analytical expressions that are based on the equivalent electric and magnetic dipole moments for the electrically small complementary disk.  相似文献   

15.
An infinite quasi‐orthotropic plane with a cracked circular hole under tensile loading at infinity is studied analytically. To this end, complex variable theory of Muskhelishvili is used. In addition, to obtain analytical functions, a new conformal mapping is proposed and expanded to series expressions. Stress intensity factors (SIFs) for two unequal cracks emanating from a circular hole are obtained. To validate the analytical SIFs in a quasi‐orthotropic plane, the results are compared with FEM and the results of isotropic plane. The SIFs for small cracks in a quasi‐orthotropic and an isotropic plane are different, because of difference between stress concentrations in points which cracks emanate from the hole. However, the results of quasi‐orthotropic plane converge to isotropic plane for the large cracks. Therefore, the SIFs of the large cracks in a quasi‐orthotropic plane can be replaced by the results of the center crack with equivalent length in an isotropic plane.  相似文献   

16.
A two‐dimensional transient heat conduction problem of multiple interacting circular inhomogeneities, cavities and point sources is considered. In general, a non‐perfect contact at the matrix/inhomogeneity interfaces is assumed, with the heat flux through the interface proportional to the temperature jump. The approach is based on the use of the general solutions to the problems of a single cavity and an inhomogeneity and superposition. Application of the Laplace transform and the so‐called addition theorem results in an analytical transformed solution. The solution in the time domain is obtained by performing a numerical inversion of the Laplace transform. Several numerical examples are given to demonstrate the accuracy and the efficiency of the method. The approximation error decreases exponentially with the number of the degrees of freedom in the problem. A comparison of the companion two‐ and three‐dimensional problems demonstrates the effect of the dimensionality. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Analytical solutions describing the consolidation of a multi-layered soil under circular loading are presented. From the governing equations of saturated poroelastic soil in a cylindrical coordinate system, the eighth-order state-space equation of consolidation is obtained by eliminating the variation of time t using the Laplace transform together with the technique of Fourier expansions with respect to the coordinate θ and the Hankel transform with respect to coordinate r. The solution of the eighth-order state-space equation is derived directly by using the Laplace transform and its inversion of the z-domain. Based on the continuity between layers and the boundary conditions, the transfer-matrix method is utilized to derive the solutions for the consolidation of a multi-layered soil under circular loading in the transformed domain. By the inversion of the Laplace transform and the Hankel transform, the analytical solutions in the physical domain are obtained. A numerical analysis based on the solutions is carried out by a corresponding program.  相似文献   

18.
The paper examines the elastodynamic response of an infinite two-dimensional orthotr- opic medium containing a central crack under impact shear loading. Laplace and Fourier integral transforms are employed to reduce the problem to a pair of dual integral equations in the Laplace transformed plane. These equations are reduced to integral differential equations, which have been solved in the low frequency domain by iterations. To determine time dependence, these equations are inverted to yield the dynamic stress intensity factor (SIF) for shear point force loading that corresponds to the weight function for the crack under shear loading. It is used to derive SIF for polynomial loading.  相似文献   

19.
Impact response of a finite crack in an orthotropic strip   总被引:1,自引:0,他引:1  
Summary The elastodynamic response of a finite crack in an infinite orthotropic strip under normal impact is investigated in this study. The crack is situated symmetrically and oriented in a direction normal to the edges of the strip. Laplace and Hankel transforms are used to reduce the transient problem to the solution of a pair of dual integral equations in the Laplace transform plane. The solution to the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. Numerical values on the dynamic stress intensity factor for some fiber-reinforced composite materials are obtained and the results are graphed to display the influence of the material orthotropy.  相似文献   

20.
In a previous scientific note, a short computer program for a personal computer was described that calculated the average solid angle subtended by a circular or rectangular detector window to a circular or rectangular source in a parallel plane by a Monte Carlo method. This note describes the development of the program for conditions where the detector window is not parallel to the plane of the source, and in particular looks at a method of analysing orientations that relates straightforwardly to practical measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号