共查询到3条相似文献,搜索用时 3 毫秒
1.
Diagnosing the processes that threaten species persistence is critical for recovery planning and risk forecasting. Dominant threats are typically inferred by experts on the basis of a patchwork of informal methods. Transparent, quantitative diagnostic tools would contribute much‐needed consistency, objectivity, and rigor to the process of diagnosing anthropogenic threats. Long‐term census records, available for an increasingly large and diverse set of taxa, may exhibit characteristic signatures of specific threatening processes and thereby provide information for threat diagnosis. We developed a flexible Bayesian framework for diagnosing threats on the basis of long‐term census records and diverse ancillary sources of information. We tested this framework with simulated data from artificial populations subjected to varying degrees of exploitation and habitat loss and several real‐world abundance time series for which threatening processes are relatively well understood: bluefin tuna (Thunnus maccoyii) and Atlantic cod (Gadus morhua) (exploitation) and Red Grouse (Lagopus lagopus scotica) and Eurasian Skylark (Alauda arvensis) (habitat loss). Our method correctly identified the process driving population decline for over 90% of time series simulated under moderate to severe threat scenarios. Successful identification of threats approached 100% for severe exploitation and habitat loss scenarios. Our method identified threats less successfully when threatening processes were weak and when populations were simultaneously affected by multiple threats. Our method selected the presumed true threat model for all real‐world case studies, although results were somewhat ambiguous in the case of the Eurasian Skylark. In the latter case, incorporation of an ancillary source of information (records of land‐use change) increased the weight assigned to the presumed true model from 70% to 92%, illustrating the value of the proposed framework in bringing diverse sources of information into a common rigorous framework. Ultimately, our framework may greatly assist conservation organizations in documenting threatening processes and planning species recovery. Inferencia la Naturaleza de las Amenazas Antropogénicas para los Registros de Abundancia a Largo Plazo 相似文献
2.
Abstract: Habitat fragmentation is a severe threat to tropical biotas, but its long‐term effects are poorly understood. We evaluated longer‐term changes in the abundance of larger (>1 kg) mammals in fragmented and intact rainforest and in riparian “corridors” in tropical Queensland, with data from 190 spotlighting surveys conducted in 1986–1987 and 2006–2007. In 1986–1987 when most fragments were already 20–50 years old, mammal assemblages differed markedly between fragmented and intact forest. Most vulnerable were lemuroid ringtail possums (Hemibelideus lemuroides), followed by Lumholtz's tree‐kangaroos (Dendrolagus lumholtzi) and Herbert River ringtail possums (Pseudocheirus herbertensis). Further changes were evident 20 years later. Mammal species richness fell significantly in fragments, and the abundances of 4 species, coppery brushtail possums (Trichosurus vulpecula johnstoni), green ringtail possums (Pseudochirops archeri), red‐legged pademelons (Thylogale stigmatica), and tree‐kangaroos, declined significantly. The most surprising finding was that the lemuroid ringtail, a strict rainforest specialist, apparently recolonized one fragment, despite a 99.98% decrease in abundance in fragments and corridors. A combination of factors, including long‐term fragmentation effects, shifts in the surrounding matrix vegetation, and recurring cyclone disturbances, appear to underlie these dynamic changes in mammal assemblages. 相似文献
3.
JOEL BERGER 《Conservation biology》2012,26(5):769-777
Abstract: Photography, including remote imagery and camera traps, has contributed substantially to conservation. However, the potential to use photography to understand demography and inform policy is limited. To have practical value, remote assessments must be reasonably accurate and widely deployable. Prior efforts to develop noninvasive methods of estimating trait size have been motivated by a desire to answer evolutionary questions, measure physiological growth, or, in the case of illegal trade, assess economics of horn sizes; but rarely have such methods been directed at conservation. Here I demonstrate a simple, noninvasive photographic technique and address how knowledge of values of individual‐specific metrics bears on conservation policy. I used 10 years of data on juvenile moose (Alces alces) to examine whether body size and probability of survival are positively correlated in cold climates. I investigated whether the presence of mothers improved juvenile survival. The posited latter relation is relevant to policy because harvest of adult females has been permitted in some Canadian and American jurisdictions under the assumption that probability of survival of young is independent of maternal presence. The accuracy of estimates of head sizes made from photographs exceeded 98%. The estimates revealed that overwinter juvenile survival had no relation to the juvenile's estimated mass (p < 0.64) and was more strongly associated with maternal presence (p < 0.02) than winter snow depth (p < 0.18). These findings highlight the effects on survival of a social dynamic (the mother‐young association) rather than body size and suggest a change in harvest policy will increase survival. Furthermore, photographic imaging of growth of individual juvenile muskoxen (Ovibos moschatus) over 3 Arctic winters revealed annual variability in size, which supports the idea that noninvasive monitoring may allow one to detect how some environmental conditions ultimately affect body growth. 相似文献