首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The temperature responses of five different gradient coil designs were modeled using simplified engineering equations and measured. The model predicts that the coil temperature approaches a maximum as an inverse exponential, where the maximum temperature is governed by two parameters: a local power density and a cooling term. The power density term is a function of position and is highest where the current paths have minimum widths and are closely packed. The cooling parameter consists of convective, conductive, and radiative components which can be controlled by (1) providing forced cooling, (2) having a coil former with high thermal conductivity and thin walls, and (3) varying the emissivity of the coil surfaces. For a given gradient strength, the average temperature rise is minimized by designing a coil with a small radius and thick copper. The model predicted the local temperature rise, which is also dependent on the current density, to within 5°C of measured values.  相似文献   

2.
Three different dual-axis quadrupole gradient coils for quantitative high resolution MR imaging of small animals, phantoms and specimens were designed and built using printed circuit board technology. Numerical optimization of the conductor positions was used to increase the volume of 0.4% gradient uniformity by up to a factor of four. In one coil, the volume of 5% gradient uniformity occupied 88% and 83% of the overall diameter and length of the coil, respectively. A systematic error of 0.5% in the wire placement was shown to cause a reduction in the volume of 0.4% gradient uniformity by a factor of two, though the region of 5% gradient uniformity was not significantly affected. Heat transfer calculations were used to determine maximum peak and root-mean-squared currents that could safely be applied to the coils.  相似文献   

3.
4.
MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths.  相似文献   

5.
6.
A new design of a three-channel surface gradient coil (SGC) is presented. The optimal objective of this design is to minimize parasitic field gradients by modifying the wire arrangement in the individual coils. A 3D finite element (FE) model is employed to analyze the SGC's field predictions. The numerical analysis results of the new SGC design indicate improved field behaviors when compared with those of a previously reported SGC designed by Cho and Yi (J. Magn. Resort. 94, 471–485 (1991)). To confirm the predicted improvement, two Gy (y-axis) gradient coils, based on the old and new designs, have been constructed and installed in a General Electric CSI 2 Tesla MRI system with a 15-cm bore. Based on the resulting MR images, the new gradient coil configuration provides more uniform field gradients and less parasitic field gradients, which results in higher quality images than the previously reported SGC design. This paper also demonstrates the remarkable accuracy of the 3D FE simulation model.  相似文献   

7.
Standard gradient coils are designed by minimizing the inductance or resistance for an acceptable level of gradient field nonlinearity. Recently, a new method was proposed to minimize the maximum value of the current density in a coil additionally. The stated aim of that method was to increase the minimum wire spacing and to reduce the peak temperature in a coil for fixed efficiency. These claims are tested in this study with experimental measurements of magnetic field and temperature as well as simulations of the performance of many coils. Experimental results show a 90% increase in minimum wire spacing and 40% reduction in peak temperature for equal coil efficiency and field linearity. Simulations of many more coils indicate increase in minimum wire spacing of between 50 and 340% for the coils studied here. This method is shown to be able to increase coil efficiency when constrained by minimum wire spacing rather than switching times or total power dissipation. This increase in efficiency could be used to increase gradient strength, duty cycle, or buildability. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Asymmetrical gradient coil for head imaging.   总被引:1,自引:0,他引:1  
This work presents a novel approach to develop dedicated transverse gradient coils for head imaging. The proposed coil design is based on the stochastic optimization of an asymmetrical stream function and improves the matching between the region-of-interest and the homogeneous gradient volume. Additionally, the electric field produced by these asymmetrical coils is 30% lower than that produced by standard symmetrical designs, which minimizes the risk of magnetostimulation of nerves in fast imaging techniques. A prototype of the asymmetrical gradient coil was built to test the method and magnetic field produced by the prototype was measured. Magnetic field measurements and electrical parameters of coils are in good agreement with theoretical calculations.  相似文献   

9.
Gradient coil inductance has been remarkably reduced by the minimum-inductance design technique, which minimizes the magnetic energy stored by the gradient coil. The planar gradient coil designed by this technique, however, often has poor magnetic field linearity. Scaling the spatial frequencies of the current density function derived by this method, the magnetic field linearity of the planar gradient coil can be greatly improved with a small sacrifice of gradient coil inductance. A figure of merit of the planar gradient coil has been found to be improved by scaling the spatial frequencies.  相似文献   

10.
Continuous arterial spin labeling (ASL) using a locally induced magnetic field gradient for adiabatic inversion of spins in the common carotid artery of human volunteers is demonstrated. The experimental setup consisted of a helmet resonator for imaging, a circular RF surface coil for labeling, and gradient loops to produce a magnetic field gradient. A spin-echo (SE) echo-planar imaging (EPI) sequence was used for imaging. The approach is independent of the gradients of the MR scanner. This technology may be used if the imaging gradient system does not produce an appropriate magnetic field gradient at the location of the carotid artery-for example, in a head-only scanner-and is a prerequisite for the development of a system that allows continuous labeling during the imaging experiment.  相似文献   

11.
12.
A high-strength three-axis local gradient coil set was constructed for MRI of the breast. Gradient fields with good uniformity (<10% deviation from the desired gradient) over most of the volume required for breast imaging were generated with efficiencies of up to 3.3 mT/m/A. The coils will allow diffusion breast imaging in clinically acceptable examination times. The electrical design, water cooling system, and fabrication techniques are described. Preliminary tests of the coil included images of a grid phantom and diffusion measurements in a short-T2 agarose gel phantom.  相似文献   

13.
A gradient coil design algorithm capable of controlling the position of the homogeneous region of interest (ROI) with respect to the current-carrying wires is required for many advanced imaging and spectroscopy applications. A modified minimum inductance target field method that allows the placement of a set of constraints on the final current density is presented. This constrained current minimum inductance method is derived in the context of previous target field methods. Complete details are shown and all equations required for implementation of the algorithm are given. The method has been implemented on computer and applied to the design of both a 1:1 aspect ratio (length:diameter) central ROI and a 2:1 aspect ratio edge ROI gradient coil. The 1:1 design demonstrates that a general analytic method can be used to easily obtain very short gradient coil designs for use with specialized magnet systems. The edge gradient design demonstrates that designs that allow imaging of the neck region with a head-sized gradient coil can be obtained, as well as other applications requiring edge-of-cylinder regions of uniformity.  相似文献   

14.
15.
16.
17.
18.
We present a method to calculate the electric (E)-fields within and surrounding a human body in a gradient coil, including E-fields induced by the changing magnetic fields and "conservative" E-fields originating with the scalar electrical potential in the coil windings. In agreement with previous numerical calculations, it is shown that magnetically-induced E-fields within the human body show no real concentration near the surface of the body, where nerve stimulation most often occurs. Both the magnetically-induced and conservative E-fields are shown to be considerably stronger just outside the human body than inside it, and under some circumstances the conservative E-fields just outside the body can be much larger than the magnetically-induced E-fields there. The order of gradient winding and the presence of conductive RF shield can greatly affect the conservative E-field distribution in these cases. Though the E-fields against the outer surface of the body are not commonly considered, understanding gradient E-fields may be important for reasons other than peripheral nerve stimulation (PNS), such as potential interaction with electrical equipment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号