首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Let D be a digraph with vertex set and arc set . A vertex x is a k‐king of D, if for every , there is an ‐path of length at most k. A subset N of is k‐independent if for every pair of vertices , we have and ; it is l‐absorbent if for every there exists such that . A ‐kernel of D is a k‐independent and l‐absorbent subset of . A k‐kernel is a ‐kernel. A digraph D is k‐quasitransitive, if for any path of length k, x0 and are adjacent. In this article, we will prove that a k‐quasitransitive digraph with has a k‐king if and only if it has a unique initial strong component and the unique initial strong component is not isomorphic to an extended ‐cycle where each has at least two vertices. Using this fact, we show that every strong k‐quasitransitive digraph has a ‐kernel.  相似文献   

3.
We construct (resp. ) index one current graphs with current group such that the current graphs have different underlying graphs and generate nonisomorphic orientable (resp. nonorientable) quadrangular embeddings of the complete graph , (resp. ).  相似文献   

4.
We seek the maximum number of colors in an edge‐coloring of the complete graph not having t edge‐disjoint rainbow spanning subgraphs of specified types. Let , , and denote the answers when the spanning subgraphs are cycles, matchings, or trees, respectively. We prove for and for . We prove for and for . We also provide constructions for the more general problem in which colorings are restricted so that colors do not appear on more than q edges at a vertex.  相似文献   

5.
The total embedding polynomial of a graph G is the bivariate polynomial where is the number of embeddings, for into the orientable surface , and is the number of embeddings, for into the nonorientable surface . The sequence is called the total embedding distribution of the graph G; it is known for relatively few classes of graphs, compared to the genus distribution . The circular ladder graph is the Cartesian product of the complete graph on two vertices and the cycle graph on n vertices. In this article, we derive a closed formula for the total embedding distribution of circular ladders.  相似文献   

6.
A graph G is ‐colorable if can be partitioned into two sets and so that the maximum degree of is at most j and of is at most k. While the problem of verifying whether a graph is (0, 0)‐colorable is easy, the similar problem with in place of (0, 0) is NP‐complete for all nonnegative j and k with . Let denote the supremum of all x such that for some constant every graph G with girth g and for every is ‐colorable. It was proved recently that . In a companion paper, we find the exact value . In this article, we show that increasing g from 5 further on does not increase much. Our constructions show that for every g, . We also find exact values of for all g and all .  相似文献   

7.
For each surface Σ, we define max G is a class two graph of maximum degree that can be embedded in . Hence, Vizing's Planar Graph Conjecture can be restated as if Σ is a sphere. In this article, by applying some newly obtained adjacency lemmas, we show that if Σ is a surface of characteristic . Until now, all known satisfy . This is the first case where .  相似文献   

8.
For a loopless multigraph G, the fractional arboricity Arb(G) is the maximum of over all subgraphs H with at least two vertices. Generalizing the Nash‐Williams Arboricity Theorem, the Nine Dragon Tree Conjecture asserts that if , then G decomposes into forests with one having maximum degree at most d. The conjecture was previously proved for ; we prove it for and when and . For , we can further restrict one forest to have at most two edges in each component. For general , we prove weaker conclusions. If , then implies that G decomposes into k forests plus a multigraph (not necessarily a forest) with maximum degree at most d. If , then implies that G decomposes into forests, one having maximum degree at most d. Our results generalize earlier results about decomposition of sparse planar graphs.  相似文献   

9.
For positive integers n and s, a subset [n] is s‐stable if for distinct . The s‐stable r‐uniform Kneser hypergraph is the r‐uniform hypergraph that has the collection of all s‐stable k‐element subsets of [n] as vertex set and whose edges are formed by the r‐tuples of disjoint s‐stable k‐element subsets of [n]. Meunier ( 21 ) conjectured that for positive integers with , and , the chromatic number of s‐stable r ‐uniform Kneser hypergraphs is equal to . It is a generalized version of the conjecture proposed by Alon et al. ( 1 ). Alon et al. ( 1 ) confirmed Meunier's conjecture for with arbitrary positive integer q. Lin et al. ( 17 ) studied the kth chromatic number of the Mycielskian of the ordinary Kneser graphs for . They conjectured that for . The case was proved by Mycielski ( 22 ). Lin et al. ( 17 ) confirmed their conjecture for , or when n is a multiple of k or . In this paper, we investigate the multichromatic number of the usual s ‐stable Kneser graphs . With the help of Fan's (1952) combinatorial lemma, we show that Meunier's conjecture is true for r is a power of 2 and s is a multiple of r, and Lin‐Liu‐Zhu's conjecture is true for .  相似文献   

10.
Let denote the maximum number of edges in a graph having n vertices and exactly p perfect matchings. For fixed p, Dudek and Schmitt showed that for some constant when n is at least some constant . For , they also determined and . For fixed p, we show that the extremal graphs for all n are determined by those with vertices. As a corollary, a computer search determines and for . We also present lower bounds on proving that for (as conjectured by Dudek and Schmitt), and we conjecture an upper bound on . Our structural results are based on Lovász's Cathedral Theorem.  相似文献   

11.
Interval minors of bipartite graphs were recently introduced by Jacob Fox in the study of Stanley–Wilf limits. We investigate the maximum number of edges in ‐interval minor‐free bipartite graphs. We determine exact values when and describe the extremal graphs. For , lower and upper bounds are given and the structure of ‐interval minor‐free graphs is studied.  相似文献   

12.
The circular chromatic index of a graph G, written , is the minimum r permitting a function such that whenever e and are adjacent. It is known that for any , there is a 3‐regular simple graph G with . This article proves the following results: Assume is an odd integer. For any , there is an n‐regular simple graph G with . For any , there is an n‐regular multigraph G with .  相似文献   

13.
For a multigraph G, the integer round‐up of the fractional chromatic index provides a good general lower bound for the chromatic index . For an upper bound, Kahn 1996 showed that for any real there exists a positive integer N so that whenever . We show that for any multigraph G with order n and at least one edge, ). This gives the following natural generalization of Kahn's result: for any positive reals , there exists a positive integer N so that + c whenever . We also compare the upper bound found here to other leading upper bounds.  相似文献   

14.
15.
Let be a function on the vertex set of the graph . The graph G is f‐choosable if for every collection of lists with list sizes specified by f there is a proper coloring using colors from the lists. The sum choice number, , is the minimum of , over all functions f such that G is f‐choosable. It is known (Alon, Surveys in Combinatorics, 1993 (Keele), London Mathematical Society Lecture Note Series, Vol. 187, Cambridge University Press, Cambridge, 1993, pp. 1–33, Random Struct Algor 16 (2000), 364–368) that if G has average degree d, then the usual choice number is at least , so they grow simultaneously. In this article, we show that can be bounded while the minimum degree . Our main tool is to give tight estimates for the sum choice number of the unbalanced complete bipartite graph .  相似文献   

16.
We prove that the vertex degree threshold for tiling (the 3‐uniform hypergraph with four vertices and two triples) in a 3‐uniform hypergraph on vertices is , where if and otherwise. This result is best possible, and is one of the first results on vertex degree conditions for hypergraph tiling.  相似文献   

17.
In this article, we continue the study of 2‐colorings in hypergraphs. A hypergraph is 2‐colorable if there is a 2‐coloring of the vertices with no monochromatic hyperedge. Let denote the class of all k‐uniform k‐regular hypergraphs. It is known (see Alon and Bregman [Graphs Combin. 4 (1988) 303–306] and Thomassen [J. Amer. Math. Soc. 5 (1992), 217–229] that every hypergraph is 2‐colorable, provided . As remarked by Alon and Bregman the result is not true when , as may be seen by considering the Fano plane. Indeed there are several constructions for building infinite families of hypergraphs in that are not 2‐colorable. Our main result in this paper is a strengthening of the above results. For this purpose, we define a set X of vertices in a hypergraph H to be a free set in H if we can 2‐color such that every edge in H receives at least one vertex of each color. We conjecture that for , every hypergraph has a free set of size in H. We show that the bound cannot be improved for any and we prove our conjecture when . Our proofs use results from areas such as transversal in hypergraphs, cycles in digraphs, and probabilistic arguments.  相似文献   

18.
In an earlier article the authors constructed a hamilton cycle embedding of in a nonorientable surface for all and then used these embeddings to determine the genus of some large families of graphs. In this two‐part series, we extend those results to orientable surfaces for all . In part II, a voltage graph construction is presented for building embeddings of the complete tripartite graph on an orientable surface such that the boundary of every face is a hamilton cycle. This construction works for all such that p is prime, completing the proof started by part I (which covers the case ) that there exists an orientable hamilton cycle embedding of for all , . These embeddings are then used to determine the genus of several families of graphs, notably for and, in some cases, for .  相似文献   

19.
Let be nonnegative integers. A graph G is ‐colorable if its vertex set can be partitioned into sets such that the graph induced by has maximum degree at most d for , while the graph induced by is an edgeless graph for . In this article, we give two real‐valued functions and such that any graph with maximum average degree at most is ‐colorable, and there exist non‐‐colorable graphs with average degree at most . Both these functions converge (from below) to when d tends to infinity. This implies that allowing a color to be d‐improper (i.e., of type ) even for a large degree d increases the maximum average degree that guarantees the existence of a valid coloring only by 1. Using a color of type (even with a very large degree d) is somehow less powerful than using two colors of type (two stable sets).  相似文献   

20.
We construct a face two‐colourable, blue and green say, embedding of the complete graph in a nonorientable surface in which there are blue faces each of which have a hamilton cycle as their facial walk and green faces each of which have a triangle as their facial walk; equivalently a biembedding of a Steiner triple system of order n with a hamilton cycle decomposition of , for all and . Using a variant of this construction, we establish the minimum genus of nonorientable embeddings of the graph , for where and .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号