首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is shown that a linear correlation exists between nuclear shielding constants for nine small inorganic and organic molecules (N(2), CO, CO(2), NH(3), CH(4), C(2)H(2), C(2)H(4), C(2)H(6) and C(6)H(6)) calculated with 47 methods (42 DFT methods, RHF, MP2, SOPPA, SOPPA(CCSD), CCSD(T)) and the aug-cc-pVTZ-J basis set and corresponding complete basis set results, estimated from calculations with the family of polarization-consistent pcS-n basis sets. This implies that the remaining basis set error of the aug-cc-pVTZ-J basis set is very similar in DFT and CCSD(T) calculations. As the aug-cc-pVTZ-J basis set is significantly smaller, CCSD(T)/aug-cc-pVTZ-J calculations allow in combination with affordable DFT/pcS-n complete basis set calculations the prediction of nuclear shieldings at the CCSD(T) level of nearly similar accuracy as those, obtained by fitting results obtained from computationally demanding pcS-n calculations at the CCSD(T) limit. A significant saving of computational efforts can thus be achieved by scaling inexpensive CCSD(T)/aug-cc-pVTZ-J calculations of nuclear isotropic shieldings with affordable DFT complete basis set limit corrections.  相似文献   

2.
Efficient B3LYP and BHandH density functionals were used to estimate methanol's nuclear magnetic isotropic shieldings and spin–spin coupling constants in the basis set limit. Polarization‐consistent pcS‐n and pcJ‐n (n = 0, 1, 2, 3 and 4), and segmented contracted XZP, where X = D, T, Q and 5, basis sets were used and the results fitted with simple mathematical formulas. The performance of the methods was assessed from comparison with experiment and higher level calculations. 1J(CH) and 3J(HH) values were determined from very diluted solutions in deuterochloroform and compared with theoretical predictions. The agreement between complete basis set (CBS) density functional theory (DFT) predicted isotropic shieldings and spin–spin values and experiment was good. The BHandH/pcS‐n methanol shieldings obtained using structures optimized at the same level of theory are approaching the accuracy of the advanced coupled‐cluster‐singles‐doubles‐approximate triples (CCSD(T)) calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Density functional theory (DFT) was used to estimate water's isotropic nuclear shieldings and indirect nuclear spin–spin coupling constants (SSCCs) in the Kohn–Sham (KS) complete basis set (CBS) limit. Correlation‐consistent cc‐pVxZ and cc‐pCVxZ (x = D, T, Q, 5, and 6), and their modified versions (ccJ‐pVxZ, unc‐ccJ‐pVxZ, and aug‐cc‐pVTZ‐J) and polarization‐consistent pc‐n and pcJ‐n (n = 0, 1, 2, 3, and 4) basis sets were used, and the results fitted with a simple mathematical formula. The performance of over 20 studied density functionals was assessed from comparison with the experiment. The agreement between the CBS DFT‐predicted isotropic shieldings, spin–spin values, and the experimental values was good and similar for the modified correlation‐consistent and polarization‐consistent basis sets. The BHandH method predicted the most accurate 1H, 17O isotropic shieldings and 1J(OH) coupling constant (deviations from experiment of about ? 0.2 and ? 1 ppm and 0.6 Hz, respectively). The performance of BHandH for predicting water isotropic shieldings and 1J(OH) is similar to the more advanced methods, second‐order polarization propagator approximation (SOPPA) and SOPPA(CCSD), in the basis set limit. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The physical nature of charge‐inverted hydrogen bonds in H3XH YH3 (X = Si, Ge; Y = Al, Ga) dimer systems is studied by means of the SAPT(DFT)‐based decomposition of interaction energies and supermolecular interaction energies based on MP2, SCS‐MP2, MP2C, and CCSD(T) methods utilizing dimer‐centered aug‐cc‐pCVnZ (n = D, T, Q) basis sets as well as an extrapolation to the complete basis set limit. It is revealed that charge‐inverted hydrogen bonds are inductive in nature, although dispersion is also important. Computed interaction energies form the following relation: . It is confirmed that the aug‐cc‐pCVDZ basis set performs poorly and that very accurate values of interaction and dispersion energies require basis sets of at least quadrupole‐ζ quality. Considerably large binding energies suggest potential usefulness of charge‐inverted hydrogen bonds as an important structural motif in molecular binding. Terminology applying to σ‐ and π‐hole interactions as well as to triel and tetrel bonds is discussed. According to this new terminology the charge‐inverted hydrogen bond would become the first described case of a hydride‐triel bond. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
The popular method of calculating the noncovalent interaction energies at the coupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] theory level in the complete basis set (CBS) limit was to add a CCSD(T) correction term to the CBS second-order Møller-Plesset perturbation theory (MP2). The CCSD(T) correction term is the difference between the CCSD(T) and MP2 interaction energies evaluated in a medium basis set. However, the CCSD(T) calculations with the medium basis sets are still very expensive for systems with more than 30 atoms. Comparatively, the domain-based local pair natural orbital coupled-cluster method [DLPNO-CCSD(T)] can be applied to large systems with over 1,000 atoms. Considering both the computational accuracy and efficiency, in this work, we propose a new scheme to calculate the CCSD(T)/CBS interaction energies. In this scheme, the MP2/CBS term keeps intact and the CCSD(T) correction term is replaced by a DLPNO-CCSD(T) correction term which is the difference between the DLPNO-CCSD(T) and DLPNO-MP2 interaction energies evaluated in a medium basis set. The interaction energies of the noncovalent systems in the S22, HSG, HBC6, NBC10, and S66 databases were recalculated employing this new scheme. The consistent and tight settings of the truncation parameters for DLPNO-CCSD(T) and DLPNO-MP2 in this noncanonical CCSD(T)/CBS calculations lead to the maximum absolute deviation and root-mean-square deviation from the canonical CCSD(T)/CBS interaction energies of less than or equal to 0.28 kcal/mol and 0.09 kcal/mol, respectively. The high accuracy and low cost of this new computational scheme make it an excellent candidate for the study of large noncovalent systems.  相似文献   

6.
At the dawn of the new millenium, new concepts are required for a more profound understanding of protein structures. Together with NMR and X-ray-based 3D-structure determinations in silico methods are now widely accepted. Homology-based modeling studies, molecular dynamics methods, and quantum mechanical approaches are more commonly used. Despite the steady and exponential increase in computational power, high level ab initio methods will not be in common use for studying the structure and dynamics of large peptides and proteins in the near future. We are presenting here a novel approach, in which low- and medium-level ab initio energy results are scaled, thus extrapolating to a higher level of information. This scaling is of special significance, because we observed previously on molecular properties such as energy, chemical shielding data, etc., determined at a higher theoretical level, do correlate better with experimental data, than those originating from lower theoretical treatments. The Ramachandran surface of an alanine dipeptide now determined at six different levels of theory [RHF and B3LYP 3-21G, 6-31+G(d) and 6-311++G(d,p)] serves as a suitable test. Minima, first-order critical points and partially optimized structures, determined at different levels of theory (SCF, DFT), were completed with high level energy calculations such as MP2, MP4D, and CCSD(T). For the first time three different CCSD(T) sets of energies were determined for all stable B3LYP/6-311++G(d,p) minima of an alanine dipeptide. From the simplest ab initio data (e.g., RHF/3-21G) to more complex results [CCSD(T)/6-311+G(d,p)//B3LYP/6-311++G(d,p)] all data sets were compared, analyzed in a comprehensive manner, and evaluated by means of statistics.  相似文献   

7.
The total interaction energies of altogether 15 hydrogen-bonded nucleic acid base pairs containing unusual base tautomers were calculated. The geometry properties of all selected adenine-thymine and guanine-cytosine hydrogen-bonded base pairs enable their incorporation into DNA. Unusual base pairing patterns were compared with Watson-Crick H-bonded structures of the adenine-thymine and guanine-cytosine pairs. The complete basis set (CBS) limit of the MP2 interaction energy and the CCSD(T) correction term, determined as the difference between the CCSD(T) and MP2 interaction energies, was evaluated. Extrapolation to the MP2 CBS limit was done using the aug-cc-pVDZ and aug-cc-pVTZ results, and the CCSD(T) correction term was determined with the 6-31G*(0.25) basis set. Final interaction energies were corrected while taking into account both tautomeric penalization determined at the CBS level and solvation/desolvation free energies. The situation for the adenine-thymine pairs is straightforward, and tautomeric pairs are significantly less stable than the Watson-Crick pair consisting of the canonical forms. In the case of the guanine-cytosine pair, the Watson-Crick structure made by canonical forms is again the most stable. The other two structures are, however, energetically rather similar (by 5 and 6 kcal/mol), which provides a very small but non-negligible chance of detecting these structures in the DNA double helix (1:5000). Due to the fact that DNA bases and base pairs incorporated into DNA are solvated less favorably than in isolated systems, this probability represents the very upper limit. The results clearly show how precisely the canonical building blocks of DNA molecules were chosen and how well their stability is maintained.  相似文献   

8.
Benchmark calculations of geminal and vicinal 29Si–1H spin–spin coupling constants across double bond in three reference alkenylsilanes have been carried out at both DFT and SOPPA levels in comparison with experiment. At the former, four density functionals, B3LYP, B3PW91, PBE0 and KT3, were tested in combination with five representative basis sets. At the latter, three main SOPPA‐based methods, SOPPA, SOPPA(CC2) and SOPPA(CCSD), were examined in combination with the same series of basis sets. On the whole, the wavefunction methods showed much better results as compared to DFT, with the most efficient combination of SOPPA/cc‐pVTZ‐su2 characterized by a mean absolute error of only 0.4 Hz calculated for a set of nine coupling constants in three compounds with a sample span of around 40 Hz. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Good performance of segmented contracted basis sets XZP, where X = D, T, Q and 5, for obtaining H2O, H2, HF, F2 and F2O nuclear isotropic shielding constants in the BHandH Kohn–Sham basis set limit was shown. The results of two‐ and three‐parameter complete basis set limit extrapolation schemes were compared with experimental results, earlier literature data and benchmark ab initio results. Similar convergence patterns of shieldings obtained from calculations using general purpose XZP basis sets and from polarization‐consistent basis sets pcS‐n and pcJ‐n, where n = 0, 1, 2, 3 and 4, designed to accurately predict magnetic properties were observed. On the contrary, the SSCCs were more sensitive to the XZP basis set size and generally less accurate than those estimated using pcJ‐n basis set family. The BHandH density functional markedly outperforms B3LYP method in predicting heavy atom shieldings and SSCCs values in the studied systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The geometries and interaction energies of stacked and hydrogen-bonded uracil dimers and a stacked adeninecdots, three dots, centeredthymine pair were studied by means of high-level quantum chemical calculations. Specifically, standard as well as counterpoise-corrected optimizations were performed at second-order Moller-Plesset (MP2) and coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)] levels with various basis sets up to the complete basis set limit. The results can be summarized as follows: (i) standard geometry optimization with small basis set (e.g., 6-31G(*)) provides fairly reasonable intermolecular separation; (ii) geometry optimization with extended basis sets at the MP2 level underestimates the intermolecular distances compared to the reference CCSD(T) results, whereas the MP2/cc-pVTZ counterpoise-corrected optimization agrees well with the reference geometries and, therefore, is recommended as a next step for improving MP2/cc-pVTZ geometries; (iii) the stabilization energy of stacked nucleic acids base pairs depends considerably on the method used for geometry optimization, so the use of reliable geometries, such as counterpoise-corrected MP2/cc-pVTZ ones, is recommended; (iv) the density functional theory methods fail completely in locating the energy minima for stacked structures and when the geometries from MP2 calculations are used, the resulting stabilization energies are strongly underestimated; (v) the self-consistent charges-density functional tight binding method, with inclusion of the empirical dispersion energy, accurately reproduces interaction energies and geometries of dispersion-bonded (stacked) complexes; this method can thus be recommended for prescanning the potential energy surfaces of van der Waals complexes.  相似文献   

11.
A number of most representative second order polarization propagator approach (SOPPA) based wavefunction methods, SOPPA, SOPPA(CC2) and SOPPA(CCSD), and density functional theory (DFT) based methods, B3LYP, PBE0, KT2, and KT3, have been benchmarked in the calculation of the one‐bond 29Si‐1H spin‐spin coupling constants in the series of halosilanes SiHnX4?n (X = F, Cl, Br, I), both at the non‐relativistic and full four‐parameter Dirac's relativistic levels taking into account vibrational corrections. At the non‐relativistic level, the wavefunction methods showed much better results as compared with those of DFT. At the DFT level, out of four tested functionals, the Perdew, Burke, and Ernzerhof's PBE0 showed best performance. Taking into account, relativistic effects and vibrational corrections noticeably improves wavefunction methods results, but generally worsens DFT results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
MP2 and CCSD(T) complete basis set (CBS) limit interaction energies and geometries for more than 100 DNA base pairs, amino acid pairs and model complexes are for the first time presented together. Extrapolation to the CBS limit is done by using two-point extrapolation methods and different basis sets (aug-cc-pVDZ - aug-cc-pVTZ, aug-cc-pVTZ - aug-cc-pVQZ, cc-pVTZ - cc-pVQZ) are utilized. The CCSD(T) correction term, determined as a difference between CCSD(T) and MP2 interaction energies, is evaluated with smaller basis sets (6-31G** and cc-pVDZ). Two sets of complex geometries were used, optimized or experimental ones. The JSCH-2005 benchmark set, which is now available to the chemical community, can be used for testing lower-level computational methods. For the first screening the smaller training set (S22) containing 22 model complexes can be recommended. In this case larger basis sets were used for extrapolation to the CBS limit and also CCSD(T) and counterpoise-corrected MP2 optimized geometries were sometimes adopted.  相似文献   

13.
An accurate single‐sheeted double many‐body expansion potential energy surface is reported for the title system. A switching function formalism has been used to warrant the correct behavior at the and dissociation channels involving nitrogen in the ground and first excited states. The topographical features of the novel global potential energy surface are examined in detail, and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. The novel surface can be using to treat well the Renner–Teller degeneracy of the and states of . Such a work can both be recommended for dynamics studies of the reaction and as building blocks for constructing the double many‐body expansion potential energy surface of larger nitrogen/hydrogen‐containing systems. In turn, a test theoretical study of the reaction has been carried out with the method of quantum wave packet on the new potential energy surface. Reaction probabilities, integral cross sections, and differential cross sections have been calculated. Threshold exists because of the energy barrier (68.5 meV) along the minimum energy path. On the curve of reaction probability for total angular momentum J = 0, there are two sharp peaks just above threshold. The value of integral cross section increases quickly from zero to maximum with the increase of collision energy, and then stays stable with small oscillations. The differential cross section result shows that the reaction is a typical forward and backward scatter in agreement with experimental measurement result. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
The ground state potential curves of the Zn2, Cd2, and Hg2 dimers calculated at different levels of theory are presented and compared with each other as well as with experimental and other theoretical studies. The calculations at the level of Dirac-Coulomb Hamiltonian (DCH), 4-component spin-free Hamiltonian, nonrelativistic Lévy-Leblond Hamiltonian and at the level of simple Coulombic correction to DCH are presented. The potential curves are calculated in an all-electron supermolecular approach including the correction to basis set superposition error (BSSE). Electron correlation is treated at the coupled cluster level including single and double excitations and noniterative triple corrections, CCSD(T). In addition, simulations of the temperature dependence of dynamic viscosities in the low-density limit using the obtained ground state potential curves are presented.  相似文献   

15.
The MP2 (the second-order M?ller-Plesset calculation) and CCSD(T) (coupled cluster calculation with single and double substitutions with noniterative triple excitations) interaction energies of all-trans n-alkane dimers were calculated using Dunning's [J. Chem. Phys. 90, 1007 (1989)] correlation consistent basis sets. The estimated MP2 interaction energies of methane, ethane, and propane dimers at the basis set limit [EMP2(limit)] by the method of Helgaker et al. [J. Chem. Phys. 106, 9639 (1997)] from the MP2/aug-cc-pVXZ (X=D and T) level interaction energies are very close to those estimated from the MP2/aug-cc-pVXZ (X=T and Q) level interaction energies. The estimated EMP2(limit) values of n-butane to n-heptane dimers from the MP2/cc-pVXZ (X=D and T) level interaction energies are very close to those from the MP2/aug-cc-pVXZ (X=D and T) ones. The EMP2(limit) values estimated by Feller's [J. Chem. Phys. 96, 6104 (1992)] method from the MP2/cc-pVXZ (X=D, T, and Q) level interaction energies are close to those estimated by the method of Helgaker et al. from the MP2/cc-pVXZ (X=T and Q) ones. The estimated EMP2(limit) values by the method of Helgaker et al. using the aug-cc-pVXZ (X=D and T) are close to these values. The estimated EMP2(limit) of the methane, ethane, propane, n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane dimers by the method of Helgaker et al. are -0.48, -1.35, -2.08, -2.97, -3.92, -4.91, -5.96, -6.68, -7.75, and -8.75 kcal/mol, respectively. Effects of electron correlation beyond MP2 are not large. The estimated CCSD(T) interaction energies of the methane, ethane, propane, and n-butane dimers at the basis set limit by the method of Helgaker et al. (-0.41, -1.22, -1.87, and -2.74 kcal/mol, respectively) from the CCSD(T)/cc-pVXZ (X=D and T) level interaction energies are close to the EMP2(limit) obtained using the same basis sets. The estimated EMP2(limit) values of the ten dimers were fitted to the form m0+m1X (X is 1 for methane, 2 for ethane, etc.). The obtained m0 and m1 (0.595 and -0.926 kcal/mol) show that the interactions between long n-alkane chains are significant. Analysis of basis set effects shows that cc-pVXZ (X=T, Q, or 5), aug-cc-pVXZ (X=D, T, Q, or 5) basis set, or 6-311G** basis set augmented with diffuse polarization function is necessary for quantitative evaluation of the interaction energies between n-alkane chains.  相似文献   

16.
Stabilisation energies of stacked structures of C(6)H(6)...C(6)X(6) (X = F, Cl, Br, CN) complexes were determined at the CCSD(T) complete basis set (CBS) limit level. These energies were constructed from MP2/CBS stabilisation energies and a CCSD(T) correction term determined with a medium basis set (6-31G**). The former energies were extrapolated using the two-point formula of Helgaker et al. from aug-cc-pVDZ and aug-cc-pVTZ Hartree-Fock energies and MP2 correlation energies. The CCSD(T) correction term is systematically repulsive. The final CCSD(T)/CBS stabilisation energies are large, considerably larger than previously calculated and increase in the series as follows: hexafluorobenzene (6.3 kcal mol(-1)), hexachlorobenzene (8.8 kcal mol(-1)), hexabromobenzene (8.1 kcal mol(-1)) and hexacyanobenzene (11.0 kcal mol(-1)). MP2/SDD** relativistic calculations performed for all complexes mentioned and also for benzene[dot dot dot]hexaiodobenzene have clearly shown that due to relativistic effects the stabilisation energy of the hexaiodobenzene complex is lower than that of hexabromobenzene complex. The decomposition of the total interaction energy to physically defined energy components was made by using the symmetry adapted perturbation treatment (SAPT). The main stabilisation contribution for all complexes investigated is due to London dispersion energy, with the induction term being smaller. Electrostatic and induction terms which are attractive are compensated by their exchange counterparts. The stacked motif in the complexes studied is very stable and might thus be valuable as a supramolecular synthon.  相似文献   

17.
Within the quantum topological energy partitioning method called Interacting Quantum Atoms (IQA) we transition from Møller-Plesset (MP4SDQ) to CCSD in calculating intra- and interatomic electron correlation energies for a set of hydrides, diatomics, a few simple molecules and non-covalently bonded complexes, using the uncontracted basis set 6-31++G(2d,2p). CCSD-IQA allows a more rigorous analysis of atomic electron correlation than that offered by Møller-Plesset, which returns IQA contributions that are identical to Hartree–Fock counterparts except for two-electron terms. The CCSD-IQA analysis returns bond and other interatomic correlation energies that are typically much larger in magnitude than the MP4SDQ values. Crisp patterns of energy transferability are detected in water clusters, both for intra-atomic and interatomic correlation energies. CCSD determines that the intra-atomic correlation energy of an oxygen drops by 15 kJ · mol–1 for donating a hydrogen and by 25 kJ · mol–1 for accepting a hydrogen.  相似文献   

18.
We have obtained interaction dipole moment curves for the rare gas heterodiatoms Rg...Xe (Rg = He, Ne, Ar, and Kr) from conventional ab initio and density functional theory calculations with flexible Gaussian-type basis sets. All methods seem to reproduce fairly similar dipole moment curves for all pairs. Our best values for the interaction dipole moment (at the respective experimental equilibrium separation R e) were obtained at the coupled-cluster theory with single, double, and perturbatively linked triple excitations level of theory: μint(RgXe)/eα0 = − 0.0025(He), − 0.0047(Ne), − 0.0055(Ar), and − 0.0037(Kr). The same trend (in absolute terms) is observed at the MP2 level of theory for the derivative of the dipole moment at R e, as (dμint (RgXe)/dR) e /e = 0.0043 (He), 0.0082 (Ne), 0.0091 (Ar), and 0.0059 (Kr). Around R e , μint(HeXe) ≡ μHeXe varies at the MP2 level of theory as [μHeXe(R) − μHeXe(R e)]/ea0 = 0.0043(RR e) − 0.0033(RR e)2 + 0.0018(RR e)3 − 0.0005(RR e)4.  相似文献   

19.
The reaction between ferrocenium and trimethylphosphine was studied using density functional theory (DFT), domain-based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)), and N-electron valence state perturbation theory (NEVPT2). The accuracy of the DFT functionals decreases compared to the DLPNO-CCSD(T) level in the following order: M06-L > TPSS > M06, BLYP > PBE, PBE0, B3LYP > > PWPB95 > > DSD-BLYP. The roles of thermochemical, continuum solvation (SMD), and counterpoise corrections were evaluated. Grimme's D3 empirical dispersion correction is essential for all functionals studied except M06 and M06-L. The reliability of the frequency calculations performed directly within the SMD was confirmed. The systems showed no significant multireference character according to T1 and T2 diagnostics and the fractional occupation number (FOD) weighted electron density analysis. The multireference NEVPT2 calculations gave qualitatively valid conclusions about the reaction mechanism. However, a multireference approach is generally not recommended because it requires arbitrary chosen active spaces.  相似文献   

20.
In this article, we examined the Gibbs energy of activation for the Z/E thermal isomerization reaction of (1Z)‐acetaldehyde hydrazone and (1Z)‐acetaldehyde N,N‐dimethylhydrazone, at 298.15 K in the solvent of cyclohexane. We carried out computations employing both the Gaussian‐4 (G4) theory and the coupled cluster method using both single and double substitutions and triple excitations noniteratively, CCSD(T). The CCSD(T) energy is extrapolated to the complete basis set (CBS). We compared the calculated results to the available experimental observation. It appeared that both G4 and CCSD(T)/CBS computations overestimated the experimental value by as much as about 6 and 12 kcal/mol in the present two cases. We discussed possible sources of error and proposed the experimental kinetic data could be questionable. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号