共查询到6条相似文献,搜索用时 8 毫秒
1.
TiB2 coatings have been studied as prospective protective layers to inhibit the interfacial reaction between SiC fibres and Ti-alloy matrices. This protective coating has been deposited onto SiC monofilament fibres using a chemical vapour deposition (CVD) technique. The fibre-matrix compatibility of these TiB2-coated SiC fibres in Ti-6Al-4V composites was evaluated by incorporating the coated fibres into Ti-6Al-4V using a diffusion bonding technique. The interfaces of this composite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis, to evaluate the interfacial microstructures, chemical stability and the efficiency of TiB2 as a protective coating for SiC fibres in Ti-alloy matrices, and to study the effects of deposition temperature on the interface of the coated fibre. Results show that stoichiometric TiB2 coatings are stable chemically to both SiC fibres and Ti-6Al-4V and hinder the deleterious fibre-matrix reactions effectively. Boron-rich TiB2 coatings should be avoided, as they lead to the formation of a needle-like TiB phase at the fibre–matrix interface. These findings provide promising evidence for the value of further exploration of the use of stoichiometric TiB2 as a protective coating for SiC fibre in Ti-based composites. 相似文献
2.
This paper presents a characterization study of the microstructural evolution of various carbon fibre-reinforced polycarbosilane (PCS)-derived SiC matrix composites during high temperature heat treatment. Both surface-treated and untreated carbon fibre reinforcements were investigated. The STEM/EELS technique was found to be a particularly useful characterization tool. The results of quantitative EELS linescans have been interpreted in terms of the migration of gaseous SiO and CO, produced by the reaction between the small amount of SiO2 and excess carbon within the PCS-derived SiC matrix, from the central matrix region towards the fibre–matrix interfaces. Generally, the migration of gaseous SiO and CO results in an enrichment of SiO2 at the region adjacent to the fibre–matrix interface. However, differing final composite microstructures are formed depending on the strength of the fibre–matrix bonding. In the case of strong fibre-matrix interfacial bonding where few escape channels are present, a distinct Si–C–O layer was identified within the matrix adjacent to the fibre–matrix interface; both crystalline β-SiC and the segregated Si–O–C phase coexist in this microstructure up to at least 1450 °C. In the case of weak fibre–matrix bonding this oxygen segregated interfacial layer is eventually removed at high enough temperatures. The final interfacial microstructure has important consequences for the mechanical properties of the composite material. 相似文献
3.
Vacuum plasma spraying (VPS) and vacuum hot pressing (VHP) have been used to fabricate Ti-6Al-4V matrix composite material reinforced longitudinally with DERA Sigma C coated SiC 1140+ fibres. VPS of Ti-6Al-4V onto Sigma 1140+ SiC fibres caused no fibre/matrix interfacial reaction. During VHP a fibre/matrix reaction occurred, producing a mixture of fine (< 50 nm) TiCx (x ≤ 1) adjacent to the fibre coating and coarse-grained (0.3–0.5 μm) equiaxed TiCx adjacent to the Ti matrix. A decrease in C concentration with increasing distance from the C coating is proposed, and is consistent with the evidence presented. A similar thickness and morphology of reaction product arose from conventional foil–fibre foil processing, but the matrix coated fibre/hot isostatic pressing process led to a slightly thicker reaction layer. The TiCx reaction product acted as a diffusion barrier, inhibiting further reaction more effectively than in experiments on earlier SiC fibres having a C coating. Surface damage was shown to be a factor in lowering 1140+ SiC fibre failure stress. Surface damage to 1140+ fibres resulted from both VPS and VHP, the former causing a slight reduction in mean ultimate tensile strength (UTS), and a large reduction in the bend strain to failure Weibull modulus. This damage was caused by both fibre winding and by deposition of metal during VPS, giving rise to coating flaws, and is not in itself considered to be a major problem. Surface damage increased after VHP, reducing the mean UTS and tensile Weibull modulus, and the mean bend strain to failure. This damage arose from bending and flattening of the rough monotapes, and from the fibre/matrix reaction caused by thermal exposure. The level of damage to 1140+ SiC fibre from VHP was reduced by modification of the process path. Increasing the VHP temperature and lowering the pressure ramp rate reduced fibre damage sufficiently to enable a macroscopic composite UTS of 95% of the theoretical maximum to be achieved. 相似文献
4.
A unidirectional SiCf –YMAS glass–ceramic composite has been developed by Céramiques-Composites (Bazet) and ONERA (Establishment of Palaiseau) in France. The matrix is totally crystalline and consists essentially of two main phases, cordierite and yttrium disilicate, with some minor phases, mullite, spinel, zirconium and titanium oxides. Image analysis methods have been used to characterize the homogeneity of the composite plates and to obtain granulometric information on the different matrix phases. Different interphase layers formed during the process by reaction between the matrix and the Nicalon NLM 202 fibres have been studied by using HREM and EDX. Their chemical composition has been determined by stepping the probe (8 nm) across the fibre–matrix interface. Two distinct nanoscale sublayers have been imaged. The sublayer on the matrix side has a light contrast in the TEM. The microstructure of this layer (≈ 80 nm) is typical of a turbostratic carbon. The carbon layer also contains Al, O, Mg and Si. The silicon content is low in the carbon layer. The sublayer on the fibre side (≈ 100 nm thick) has a dark contrast in the TEM. Profiles have been taken across this sublayer also. Tensile creep tests in air have been performed to investigate the tensile creep behaviour at 1223 K. They have been conducted in the 50–200 MPa stress range. Tensile creep results indicate that creep rates are of the same order of magnitude as for other glass–ceramic composites. Optical micrographs and SEM observations have revealed the damage in the composite. Changes occurring in the interface region have been studied at a finer scale by TEM and HREM at the surface of the sample and in the core. These observations enable us to explain the mechanical behaviour of the composite observed on a macroscopic scale. 相似文献
5.
A modified blended elemental powder metallurgy (MBEPM) method has been developed for the production of low-cost Ti alloys and in situ Ti/TiB MMCs for automobile components such as connecting rods and inlet and exhaust valves. The MBEPM method uses Ti sponge fines as raw material, which contain a substantial amount of Cl. The Cl refines the microstructure of the as-sintered Ti–6Al–4V alloys, with a reduced prior β-grain size and a reduced α-lath size and aspect ratio. However, the grain refining effect of Cl is much less pronounced in as-sintered Ti–6Al–4V–10%TiB MMCs. The Cl is present in the as-sintered microstructure in three forms: (1) shells consisting of fine NaCl particles in macropores; (2) cuboidal NaCl precipitates in the alloy matrix; and (3) Cl and Na segregated to prior β-grain boundaries. Increasing the Cl content increases the tensile ductility of both Ti–6Al–4V alloys and Ti–6Al–4V–10%TiB MMCs, but has little effect on strength. 相似文献
6.
Processing of aluminium matrix composites (AMCs), especially those constituted by a reactive system such as Al–SiC, presents great difficulties which limit their potential applications. The interface reactivity between SiC and molten Al generates an aluminium carbide which degrades the composite properties. Scanning and transmission electron microscopes equipped with energy-dispersive X-ray spectroscopes are essential tools for determining the structure and chemistry of the Al–SiC interfaces in AMCs and changes occurring during casting and arc welding. In the present work, an aluminium–copper alloy (AA2014) reinforced with three different percentages of SiC particles was subjected to controlled remelting tests, at temperatures in the range 750–900 °C for 10 and 30 min. Arc welding tests using a tungsten intert gas with power inputs in the range 850–2000 W were also carried out. The results of these studies showed that during remelting there is preferential SiC particle consumption with formation of Al4 C3 by interface reaction between the solid SiC particle and the molten aluminium matrix. The formation of Al4 C3 by the same mechanism has also been detected in molten pools of arc welded composites. However, in this case there was formation of an almost continuous layer of Al4 C3 , which protects the particle against further consumption, and formation of aciculate aluminium carbide on the top weld. Both are formed by fusion and dissolution of the SiC in molten aluminium followed by reaction and precipitation of the Al4 C3 during cooling. 相似文献