首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The subcellular location of the nonstructural proteins NS1, NS2B, and NS3 in Vero cells infected with the flavivirus Kunjin was investigated using indirect immunofluorescence and cryoimmunoelectron microscopy with monospecific antibodies. Comparisons were also made by dual immunolabelling using antibodies to double-stranded RNA (dsRNA), the putative template in the flavivirus replication complex. At 8 h postinfection, the immunofluorescent patterns showed NS1, NS2B, NS3, and dsRNA located in a perinuclear rim with extensions into the peripheral cytoplasm. By 16 h, at the end of the latent period, all patterns had changed to some discrete perinuclear foci associated with a thick cytoplasmic reticulum. By 24 h, this localization in perinuclear foci was more apparent and some foci were dual labelled with antibodies to dsRNA. In immuno-gold-labelled cryosections of infected cells at 24 h, all antibodies were associated with clusters of induced membrane structures in the perinuclear region. Two important and novel observations were made. First, one set of induced membranes comprised vesicle packets of smooth membranes dual labelled with anti-dsRNA and anti-NS1 or anti-NS3 antibodies. Second, adjacent masses of paracrystalline arrays or of convoluted smooth membranes, which appeared to be structurally related, were strongly labelled only with anti-NS2B and anti-NS3 antibodies. Paired membranes similar in appearance to the rough endoplasmic reticulum were also labelled, but less strongly, with antibodies to the three nonstructural proteins. Other paired membranes adjacent to the structures discussed above enclosed accumulated virus particles but were not labelled with any of the four antibodies. The collection of induced membranes may represent virus factories in which translation, RNA synthesis, and virus assembly occur.  相似文献   

2.
The intracellular assembly site for flaviviruses in currently not known but is presumed to be located within the lumen of the rough endoplasmic reticulum (RER). Building on previous studies involving immunofluorescence (IF) and cryoimmunoelectron microscopy of Kunjin virus (KUN)-infected cells, we sought to identify the steps involved in the assembly and maturation of KUN. Thus, using antibodies directed against envelope protein E in IF analysis, we found the accumulation of E within regions coincident with the RER and endosomal compartments. Immunogold labeling of cryosections of infected cells indicated that E and minor envelope protein prM were localized to reticulum membranes continuous with KUN-induced convoluted membranes (CM) or paracrystalline arrays (PC) and that sometimes the RER contained immunogold-labeled virus particles. Both proteins were also observed to be labeled in membranes at the periphery of the induced CM or PC structures, but the latter were very seldom labeled internally. Utilizing drugs that inhibit protein and/or membrane traffic throughout the cell, we found that the secretion of KUN particles late in infection was significantly affected in the presence of brefeldin A and that the infectivity of secreted particles was severely affected in the presence of monensin and N-nonyl-deoxynojirimycin. Nocodazole did not appear to affect maturation, suggesting that microtubules play no role in assembly or maturation processes. Subsequently, we showed that the exit of intact virions from the RER involves the transport of individual virions within individual vesicles en route to the Golgi apparatus. The results suggest that the assembly of virions occurs within the lumen of the RER and that subsequent maturation occurs via the secretory pathway.  相似文献   

3.
Localization of VP40 in Marburg virus (MBGV)-infected cells was studied by using immunofluorescence and immunoelectron microscopic analysis. VP40 was detected in association with nucleocapsid structures, present in viral inclusions and at sites of virus budding. Additionally, VP40 was identified in the foci of virus-induced membrane proliferation and in intracellular membrane clusters which had the appearance of multivesicular bodies (MVBs). VP40-containing MVBs were free of nucleocapsids. When analyzed by immunogold labeling, the concentration of VP40 in MVBs was six times higher than in nucleocapsid structures. Biochemical studies showed that recombinant VP40 represented a peripheral membrane protein that was stably associated with membranes by hydrophobic interaction. Recombinant VP40 was also found in association with membranes of MVBs and in filopodia- or lamellipodia-like protrusions at the cell surface. Antibodies against marker proteins of various cellular compartments showed that VP40-positive membranes contained Lamp-1 and the transferrin receptor, confirming that they belong to the late endosomal compartment. VP40-positive membranes were also associated with actin. Western blot analysis of purified MBGV structural proteins demonstrated trace amounts of actin, Lamp-1, and Rab11 (markers of recycling endosomes), while markers for other cellular compartments were absent. Our data indicate that MBGV VP40 was able to interact with membranes of late endosomes in the course of viral infection. This capability was independent of other MBGV proteins.  相似文献   

4.
Ganglioside glycosyltransferases organize as multienzyme complexes that localize in different sub-Golgi compartments. Here we studied whether in CHO-K1 cells lacking CMP-NeuAc: GM3 sialyltransferase (SialT2), the sub-Golgi localization of UDP-Gal:glucosylceramide beta-1,4-galactosyltransferase (GalT1) and CMP-NeuAc:lactosylceramide sialyltransferase (SialT1) complex is affected when SialT2, another member of this complex, is coexpressed. GalT1 and SialT1 sub-Golgi localization was determined by studying the effect of brefeldin A (BFA) and monensin on the synthesis of glycolipids and on the sub-Golgi localization of GalT1(1-52)-CFP (cyan fluorescent protein) and SialT1(1-54)-YFP (yellow fluorescent protein) chimeras by single cell fluorescence microscopy and by isopycnic subfractionation. We found that BFA, and also monensin, impair the synthesis of glycolipids beyond GM3 ganglioside in wild type (WT) cells but beyond GlcCer in SialT2(+) cells. Although BFA redistributed GalT1-CFP and SialT1-YFP to the endoplasmic reticulum in WT cells, a fraction of these chimeras remained associated with a distal Golgi compartment, enriched in trans Golgi network, and recycling endosome markers in SialT2(+) cells. In BFA-treated cells, the percentage of GalT1-CFP and SialT1-YFP associated with Golgi-like membrane fractions separated by isopycnic subfractionation was higher in SialT2(+) cells than in WT cells. These effects were reverted by knocking down the expression of SialT2 with specific siRNA. Results indicate that sub-Golgi localization of glycosyltransferase complexes may change according to the relative levels of the expression of participating enzymes and reveal a capacity of the organelle to adapt the topology of the glycolipid synthesis machinery to functional states of the cell.  相似文献   

5.
Vaccinia virus (VV) has a complex morphogenetic pathway whose first steps are poorly characterized. We have studied the early phase of VV assembly, when viral factories and spherical immature viruses (IVs) form in the cytoplasm of the infected cell. After freeze-substitution numerous cellular elements are detected around assembling viruses: membranes, ribosomes, microtubules, filaments, and unidentified structures. A double membrane is clearly resolved in the VV envelope for the first time, and freeze fracture reveals groups of tubules interacting laterally on the surface of the viroplasm foci. These data strongly support the hypothesis of a cellular tubulovesicular compartment, related to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), as the origin of the first VV envelope. Moreover, the cytoskeletal vimentin intermediate filaments are found around viral factories and inside the viroplasm foci, where vimentin and the VV core protein p39 colocalize in the areas where crescents protrude. Confocal microscopy showed that ERGIC elements and vimentin filaments concentrate in the viral factories. We propose that modified cellular ERGIC membranes and vimentin intermediate filaments act coordinately in the construction of viral factories and the first VV form through a unique mechanism of viral morphogenesis from cellular elements.  相似文献   

6.
This study describes the distribution of an intrinsic membrane protein, the asialoglycoprotein receptor (ASGP-R) in the trans-Golgi reticulum and compartment of uncoupling receptor and ligand (CURL) of rat liver cells. Using quantitative immunogold electron microscopy and membrane length measurements, we showed lateral nonhomogeneity of receptors in the membranes of trans-Golgi reticulum and CURL, in particular in the membranes of secretory vesicles (identified by their content of albumin and very low density lipoprotein particles) and of CURL vesicles (endosomes), including multivesicular bodies. The characteristic tubulovesicular morphology of both sorting organelles defines the transition of receptor-rich tubular membrane and the receptor-poor limiting membrane of the attached vesicles. There was a direct relationship between the size of the secretory and CURL vesicles and the density of ASGP-Rs in their membranes. Receptor density in the smallest vesicles was similar to that found in adjacent continuous tubules. The larger the vesicles, the less receptor was detectable in their membranes. We propose that the receptor molecules are excluded from the vesicle membranes by dynamic lateral redistribution. Nonrandom receptor distribution in the CURL vesicle membranes was present even at the multivesicular body stage. These observations strongly suggest the existence of barriers to ASGP-R diffusion at the junctions of tubules and vesicles. In addition, our observations suggest that ASGP-Rs are transported to the plasma membrane via a mechanism other than the normal secretory pathway.  相似文献   

7.
Membranes from brefeldin A-treated and untreated chick embryo epiphyseal cartilage were fractionated separately by equilibrium sucrose density gradient centrifugation. Fractions were assayed for Gal I transferase, Gal II transferase, Gal ovalbumin transferase, chondroitin polymerization on endogenous acceptors, GalNAc transfer to exogenous chondroitin hexasaccharide, and sulfate transfer to exogenous chondroitin. Gal I transferase and Gal II transferase activities were found in heavier cis- and medial-Golgi fractions, but with distributions different from each other. Brefeldin A had no effect on either their distribution or their total activity. Gal ovalbumin transferase activity in fractions from untreated cartilage was found as a dual peak in medial- and trans-Golgi areas. The latter peak was diminished in the fractions from the brefeldin A-treated cartilage, whereas the former peak was correspondingly increased. A similar dual medial- and trans-Golgi distribution for chondroitin polymerization on endogenous acceptors was seen with fractions from untreated cartilage. This was modified in fractions from brefeldin A-treated cartilage with a complete loss of synthesis in the trans-Golgi peak and a slight increase in synthesis in the medial-Golgi peak. However, the distribution of GalNAc transferase activity using exogenous chondroitin hexasaccharide indicated that considerable chondroitin-synthesizing activity still remained in these trans-Golgi fractions. This demonstrated that brefeldin A had caused a block in movement of endogenous proteochondroitin acceptors to the trans-Golgi site of synthesis. Sulfotransferase activity was also found in a dual distribution similar to that of the chondroitin polymerization and GalNAc transferase, with a small reduction in activity in the trans-Golgi fractions of brefeldin A-treated cartilage. Thus, treatment of cartilage with brefeldin A resulted in the loss of considerable trans-Golgi chondroitin sulfate-synthesizing enzyme activity and a block in the transport of one form of proteochondroitin precursor to the trans-Golgi membranes.  相似文献   

8.
In this work we used brefeldin A (BFA), a specific inhibitor of export to the Golgi apparatus, to study pseudorabies virus viral glycoprotein processing and virus egress. BFA had little effect on initial synthesis and cotranslational modification of viral glycoproteins in the endoplasmic reticulum (ER), but it disrupted subsequent glycoprotein maturation and export. Additionally, single-step growth experiments demonstrated that after the addition of BFA, accumulation of infectious virus stopped abruptly. BFA interruption of virus egress was reversible. Electron microscopic analysis of infected cells demonstrated BFA-induced disappearance of the Golgi apparatus accompanied by a dramatic accumulation of enveloped virions between the inner and outer nuclear membranes and also in the ER. Large numbers of envelope-free capsids were also present in the cytoplasm of all samples. In control samples, these capsids were preferentially associated with the forming face of Golgi bodies and acquired a membrane envelope derived from the trans-cisternae. Our results are consistent with a multistep pathway for envelopment of pseudorabies virus that involves initial acquisition of a membrane by budding of capsids through the inner leaf of the nuclear envelope followed by deenvelopment and release of these capsids from the ER into the cytoplasm in proximity to the trans-Golgi. The released capsids then acquire a bilaminar double envelope containing mature viral glycoproteins at the trans-Golgi. The resulting double-membraned virus is transported to the plasma membrane, where membrane fusion releases a mature, enveloped virus particle from the cell.  相似文献   

9.
BIG2 is a guanine nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF) family of small GTPases, which regulate membrane association of COPI and adaptor protein (AP)-1 coat protein complexes. A fungal metabolite, brefeldin A (BFA), inhibits ARF-GEFs and leads to redistribution of coat proteins from membranes to the cytoplasm and membrane tubulation of the Golgi complex and the trans-Golgi network (TGN). To investigate the function of BIG2, we examined the effects of BIG2-overexpression on the BFA-induced redistribution of ARF, coat proteins, and organelle markers. The BIG2 overexpression blocked BFA-induced redistribution from membranes of ARF1 and the AP-1 complex but not that of the COPI complex. These observations indicate that BIG2 is implicated in membrane association of AP-1, but not that of COPI, through activating ARF. Furthermore, not only BIG2 but also ARF1 and AP-1 were found as queues of spherical swellings along the BFA-induced membrane tubules emanating from the TGN. These observations indicate that BFA-induced AP-1 dissociation from TGN membranes and tubulation of TGN membranes are not coupled events and suggest that a BFA target other than ARF-GEFs exists in the cell.  相似文献   

10.
Small GTPases of the ADP-ribosylation factor (ARF) family play a key role in membrane trafficking by regulating coated vesicle formation, and guanine nucleotide exchange is essential for the ARF function. Brefeldin A blocks the ARF-triggered coat assembly by inhibiting the guanine nucleotide exchange on ARFs and causes disintegration of the Golgi complex and tubulation of endosomal membranes. BIG2 is one of brefeldin A-inhibited guanine nucleotide exchange factors for the ARF GTPases and is associated mainly with the trans-Golgi network. In the present study, we have revealed that another population of BIG2 is associated with the recycling endosome and found that expression of a catalytically inactive BIG2 mutant, E738K, selectively induces membrane tubules from this compartment. We also have shown that BIG2 has an exchange activity toward class I ARFs (ARF1 and ARF3) in vivo and inactivation of either ARF exaggerates the BIG2(E738K)-induced tubulation of endosomal membranes. These observations together indicate that BIG2 is implicated in the structural integrity of the recycling endosome through activating class I ARFs.  相似文献   

11.
The "uncovering enzyme," which catalyzes the second step in the formation of the mannose 6-phosphate recognition marker on lysosomal enzyme oligosaccharides, resides primarily in the trans-Golgi network and cycles between this compartment and the plasma membrane. An analysis of green fluorescent protein-uncovering enzyme chimeras revealed that the transmembrane segment and the first 11 residues of the 41-residue-cytoplasmic tail are sufficient for retention in the trans-Golgi network. The next eight residues ((486)YAYHPLQE(493)) facilitate exit from this compartment. Kinetic studies demonstrated that the (488)YHPL(491) sequence also mediates rapid internalization at the plasma membrane. This motif binds adaptor protein-2 in glutathione S-transferase-uncovering enzyme-cytoplasmic tail pull-down assays, indicating that the uncovering enzyme is endocytosed via clathrin-coated vesicles. Consistent with this finding, endogenous uncovering enzyme was detected in purified clathrin-coated vesicles. The enzyme with a Y486A mutation is internalized normally but accumulates on the cell surface because of increased recycling to the plasma membrane. This residue is required for efficient return of the enzyme from endosomes to the trans-Golgi network. These findings indicate that the YAYHPLQE motif is recognized at several sorting sites, including the trans-Golgi network, the plasma membrane, and the endosome.  相似文献   

12.
The galactosylsphingosine psychosine (Psy) is one of the sphingolipids and induce the formation of multinuclear cells in several cell lines by inhibiting cytokinesis. In the present report, we show that intracellular organelles, including wheat germ agglutinin (WGA)-positive vesicles and early endosomes, are selectively dispersed by Psy. WGA is a conventional Golgi marker and WGA-positive vesicles appeared to co-localize with the Golgi apparatus in untreated cells. Psy treatment induced the dispersal of WGA-positive vesicles without affecting the structure of the Golgi apparatus, resulting in discrimination of WGA-positive vesicles from the Golgi apparatus. In sharp contrast to this effect of Psy, WGA-positive vesicles were not affected by brefeldin A treatment, which induced the disappearance of the Golgi apparatus. Immunostaining with anti-TGN46 antibodies revealed that a large portion of the WGA-positive vesicles were derived from the trans-Golgi network. Notably, the dispersed WGA-positive vesicles did not stain with anti-syntaxin 6, another marker of the trans-Golgi network. During cytokinesis, WGA-positive vesicles in the cytoplasm decreased, and WGA staining accumulated at the cleavage furrow, which was apparently inhibited by the presence of Psy. These data suggest that the transport of WGA-positive vesicles to the cleavage furrow is associated with the progression of cytokinesis.  相似文献   

13.
Chow CM  Neto H  Foucart C  Moore I 《The Plant cell》2008,20(1):101-123
The Ypt3/Rab11/Rab25 subfamily of Rab GTPases has expanded greatly in Arabidopsis thaliana, comprising 26 members in six provisional subclasses, Rab-A1 to Rab-A6. We show that the Rab-A2 and Rab-A3 subclasses define a novel post-Golgi membrane domain in Arabidopsis root tips. The Rab-A2/A3 compartment was distinct from but often close to Golgi stacks and prevacuolar compartments and partly overlapped the VHA-a1 trans-Golgi compartment. It was also sensitive to brefeldin A and accumulated FM4-64 before prevacuolar compartments did. Mutations in RAB-A2a that were predicted to stabilize the GDP- or GTP-bound state shifted the location of the protein to the Golgi or plasma membrane, respectively. In mitosis, KNOLLE accumulated principally in the Rab-A2/A3 compartment. During cytokinesis, Rab-A2 and Rab-A3 proteins localized precisely to the growing margins of the cell plate, but VHA-a1, GNOM, and prevacuolar markers were excluded. Inducible expression of dominant-inhibitory mutants of RAB-A2a resulted in enlarged, polynucleate, meristematic cells with cell wall stubs. The Rab-A2/A3 compartment, therefore, is a trans-Golgi compartment that communicates with the plasma membrane and early endosomal system and contributes substantially to the cell plate. Despite the unique features of plant cytokinesis, membrane traffic to the division plane exhibits surprising molecular similarity across eukaryotic kingdoms in its reliance on Ypt3/Rab11/Rab-A GTPases.  相似文献   

14.
Recently, we cloned the ATA/SNAT transporters responsible for amino acid transport system A. System A is one of the major transport systems for small neutral and glucogenic amino acids represented by alanine and is involved in the metabolism of glucose and fat. Here, we describe the cellular mechanisms that participate in the acute translocation of ATA2 by insulin stimulus in 3T3-L1 adipocytes. We monitored this insulin-stimulated translocation of ATA2 using an expression system of enhanced green fluorescent protein-tagged ATA2. Studies in living cells revealed that ATA2 is stored in a discrete perinuclear site and that the transporter is released in vesicles from this site toward the plasma membrane. In immunofluorescent analysis, the storage site of ATA2 overlapped with the location of syntaxin 6, a marker of the trans-Golgi network (TGN), but not with that of EEA1, a marker of the early endosomes. The ATA2-containing vesicles on or near the plasma membrane were distinct from GLUT4-containing vesicles. Brefeldin A, an inhibitor of vesicular exit from the TGN, caused morphological changes in the ATA2 storage site along with the similar changes in the TGN. In non-transfected adipocytes, brefeldin A inhibited insulin-stimulated uptake of alpha-(methylamino)isobutyric acid more profoundly than insulin-stimulated uptake of 2-deoxy-d-glucose. These data demonstrate that the ATA2 storage site is specifically associated with the TGN and not with the general endosomal recycling system. Thus, the insulin-stimulated translocation pathways for ATA2 and GLUT4 in adipocytes are distinct, involving different storage sites.  相似文献   

15.
Skeletal muscle differentiation involves a complete reorganization of the microtubule network. Nearly 20 years ago, Tassin et al. [1985: J Cell Biol 100:35-46] suggested a mechanism for this reorganization by showing a redistribution of the microtubule organizing center from the centrosome to the nuclear membrane. Little progress has been made since. It is still not clear whether centrosomal proteins are redistributed together, whether microtubules are nucleated at the nuclear membrane or transported there post-nucleation, and whether gamma-tubulin (gammatub) remains necessary for nucleation in myotubes. To investigate these questions, we have examined the redistribution of the centrosomal proteins pericentrin (PC), gammatub, and ninein in the C2 muscle cell line. Immunofluorescence of differentiated myotubes shows PC along the nuclear membrane whereas gammatub is only detected there after pre-fixation detergent extraction. After expression of a GFP-tagged gammatub, we observe a weak fluorescence along the nuclear membrane, confirming the presence of gammatub at a low concentration relative to PC. Microinjection of anti-gammatub antibodies into myotubes blocks microtubule growth from both nuclear membranes and centrosomal sites. The centrosomal microtubule-anchoring protein, ninein, is found at the nuclear membrane as well and its distribution appears independent of microtubule integrity. We conclude that centrosomal proteins are redistributed independently during muscle differentiation, to sites that nucleate microtubules both along the nuclear membranes and through the cytoplasm.  相似文献   

16.
The roles of the components of the Sec34p protein complex in intracellular membrane trafficking, first identified in the yeast Saccharomyces cerevisiae, have yet to be characterized in higher eukaryotes. We cloned a human cDNA whose predicted amino acid sequence showed 41% similarity to yeast Sec34p with homology throughout the entire coding region. Affinity-purified antibodies raised against the human SEC34 protein (hSec34p) recognized a cellular protein of 94 kDa in both soluble and membrane fractions. Like yeast Sec34p, cytosolic hSec34p migrated with an apparent molecular mass of 300 kDa on a glycerol velocity gradient, suggesting that it is part of a protein complex. Immunofluorescence microscopy localized hSec34p to the Golgi compartment in cells of all species examined, where it co-localized well with the cis/medial Golgi marker membrin and partially co-localized with cis-Golgi network marker p115 and trans-Golgi marker TGN38. The co-localization with membrin was maintained at 15 degrees C and after microtubule depolymerization with nocodazole. During transport of the tsO45 vesicular stomatitis virus G protein through the Golgi, there was significant overlap with the hSec34p compartment. Green fluorescent protein-hSec34 expressed in HeLa cells was restricted to Golgi cisternae, and its membrane association was sensitive to brefeldin A treatment. Taken together, our findings indicate that hSec34p is part of a peripheral membrane protein complex localized on cis/medial Golgi cisternae where it may participate in tethering intra-Golgi transport vesicles.  相似文献   

17.
Domains of the TGN: coats, tethers and G proteins   总被引:6,自引:1,他引:5  
The trans-Golgi network is the major sorting compartment of the secretory pathway for protein, lipid and membrane traffic. There is a constant flow of membrane and cargo to and from this compartment. Evidence is emerging that the trans-Golgi network has multiple biochemically and functionally distinct subdomains, each of which contributes to the combined sorting and transport requirements of this dynamic compartment. The recruitment of distinct arrays of protein complexes to trans-Golgi network membranes is likely to produce the diversity of structure and biochemistry observed amongst subdomains that serve to generate different carriers or maintain resident trans-Golgi network components. This review discusses how these subdomains may be formed and examines the molecular players involved, including G proteins, clathrin adaptors and golgin tethers. Diversity within these protein families is highlighted and shown to be critical for the functionality of the trans-Golgi network, as a mediator of protein sorting and membrane transport, and for the maintenance of Golgi structure.  相似文献   

18.
Sec14, a yeast phosphatidylinositol/phosphatidylcholine transfer protein, functions at the trans-Golgi membranes. It lacks domains involved in protein-protein or protein-lipid interactions and consists solely of the Sec14 domain; hence, the mechanism underlying Sec14 function at proper sites remains unclear. In this study, we focused on the lipid packing of membranes and evaluated its association with in vitro Sec14 lipid transfer activity. Phospholipid transfer assays using pyrene-labelled phosphatidylcholine suggested that increased membrane curvature as well as the incorporation of phosphatidylethanolamine accelerated the lipid transfer. The quantity of membrane-bound Sec14 significantly increased in these membranes, indicating that “packing defects” of the membranes promote the membrane binding and phospholipid transfer of Sec14. Increased levels of phospholipid unsaturation promoted Sec14-mediated PC transfer, but had little effect on the membrane binding of the protein. Our results demonstrate the possibility that the location and function of Sec14 are regulated by the lipid packing states produced by a translocase activity at the trans-Golgi network.  相似文献   

19.
Dynactin is a multisubunit complex that plays an accessory role in cytoplasmic dynein function. Overexpression in mammalian cells of one dynactin subunit, dynamitin, disrupts the complex, resulting in dissociation of cytoplasmic dynein from prometaphase kinetochores, with consequent perturbation of mitosis (Echeverri, C.J., B.M. Paschal, K.T. Vaughan, and R.B. Vallee. 1996. J. Cell Biol. 132:617–634). Based on these results, dynactin was proposed to play a role in linking cytoplasmic dynein to kinetochores and, potentially, to membrane organelles. The current study reports on the dynamitin interphase phenotype. In dynamitin-overexpressing cells, early endosomes (labeled with antitransferrin receptor), as well as late endosomes and lysosomes (labeled with anti–lysosome-associated membrane protein-1 [LAMP-1]), were redistributed to the cell periphery. This redistribution was disrupted by nocodazole, implicating an underlying plus end–directed microtubule motor activity. The Golgi stack, monitored using sialyltransferase, galactosyltransferase, and N-acetylglucosaminyltransferase I, was dramatically disrupted into scattered structures that colocalized with components of the intermediate compartment (ERGIC-53 and ERD-2). The disrupted Golgi elements were revealed by EM to represent short stacks similar to those formed by microtubule-depolymerizing agents. Golgi-to-ER traffic of stack markers induced by brefeldin A was not inhibited by dynamitin overexpression. Time-lapse observations of dynamitin-overexpressing cells recovering from brefeldin A treatment revealed that the scattered Golgi elements do not undergo microtubule-based transport as seen in control cells, but rather, remain stationary at or near their ER exit sites. These results indicate that dynactin is specifically required for ongoing centripetal movement of endocytic organelles and components of the intermediate compartment. Results similar to those of dynamitin overexpression were obtained by microinjection with antidynein intermediate chain antibody, consistent with a role for dynactin in mediating interactions of cytoplasmic dynein with specific membrane organelles. These results suggest that dynamitin plays a pivotal role in regulating organelle movement at the level of motor–cargo binding.  相似文献   

20.
Microtubules (MT) are required for the efficient transport of membranes from the trans-Golgi and for transcytosis of vesicles from the basolateral membrane to the apical cytoplasm in polarized epithelia. MTs in these cells are primarily oriented with their plus ends basally near the Golgi and their minus-ends in the apical cytoplasm. Here we report that isolated Golgi and Golgi-enriched membranes from intestinal epithelial cells possess the actin based motor myosin-I, the MT minus- end-directed motor cytoplasmic dynein and its in vitro motility activator dynactin (p150/Glued). The Golgi can be separated into stacks, possessing features of the Golgi cisternae, and small membranes enriched in the trans-Golgi network marker TGN 38/41. Whereas myosin-I is present on all membranes in the Golgi fraction, dynein is present only on the small membrane fraction. Dynein, like myosin-I, is associated with membranes as a cytoplasmic peripheral membrane protein. Dynein and myosin-I coassociate with membranes that bind to MTs and cross-link actin filaments and MTs in a nucleotide-dependent manner. We propose that cytoplasmic dynein moves Golgi membranes along MTs to the cell cortex where myosin-I provides local delivery through the actin- rich cytoskeleton to the apical membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号