首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 536 毫秒
1.
锥形束计算机断层扫描的剂量学研究   总被引:1,自引:0,他引:1  
目的:探讨影像引导下放射治疗(IGRT)的锥形束计算机断层扫描(CBCT)产生的额外剂量,寻找合适的临床扫描方案,减少CBCT额外剂量对病人重要器官的影响。方法:用Elekta Synergy直线加速器的XVI系统,对临床扫描方案("头颈方案"和"盆腔方案")进行剂量测量。采用密度均匀的圆柱形模体,该模体在中央和四周共有5个电离室测量孔,测得这5点的绝对剂量后,引入加权CT剂量指数CTDIw参数评价扫描产生平均剂量。结果:(1)测量参数mAs对剂量影响较大;(2)测量平均剂量在0.1 cGy~5.39 cGy之间,使用"盆腔"方案在模体上测得的剂量最高;(3)采用不同滤过器F0和F1,剂量学上有明显差异,使用F0滤过器,测得剂量较F1大25%~30%。结论:为减少病人接受的额外剂量,对于儿童病人及头颈部病人,建议尽量使用头颈部扫描方案及F1滤过器;对于胸部和盆腔部扫描,也建议使用F1过滤器。  相似文献   

2.
目的:利用循环生成对抗网络模型(CycleGAN)进行锥形束CT (CBCT)图像迁移,生成伪CT(sCT)图像,从而实现CBCT图像的HU值矫正。方法:回顾性分析在福建省肿瘤医院行放射治疗的鼻咽癌患者39例,所有患者均接受临床CT与CBCT扫描。以CBCT图像为基准,采用刚性配准算法对临床CT和CBCT进行配准,获得重采样计划CT(pCT)。经阈值分割及形态学处理获取配对影像的外轮廓内部区域作为掩膜,对配对影像进行掩膜操作及归一化预处理。建立CycleGAN神经网络,训练sCT生成模型。基于体素点计算平均绝对误差(MAE)和平均误差(ME),用于比较测试集sCT与pCT之间的差异。结果:测试集的sCT图像与pCT图像相比较,在体外轮廓内的MAE和ME分别为(99.00±15.37) HU和(-24.00±12.64) HU;软组织区域的MAE和ME分别为(48.00±7.45) HU和(-7.00±8.96) HU。结论:CycleGAN能修正CBCT图像的HU值,迁移生成的sCT图像具有与pCT图像近似的HU值及平滑性,可用于放射治疗剂量计算。  相似文献   

3.
目的:分析探讨食管癌患者利用锥形束CT(CBCT)图像进行剂量计算应用的可行性。方法:选择8例经过旋转调强放疗的食管癌患者,利用自主研发ART软件实现患者扇形束CT(kVCT)和首分次CBCT的准确形变配准及计划映射,同时采用直方图匹配方法对CBCT的HU值进行修正;将所得CBCT计划导入到原系统采用kVCT的HU-ED曲线及跳数重新完成剂量计算。结果:CBCT图像中各组织接受剂量及体积参数相对于kVCT偏差绝对值均小于1%。按照2 mm/2%/TH:10%标准,CBCT图像中各组织接受剂量相对于kVCT平均γ通过率均达99%以上。按照1 mm/1%/TH:10%标准,靶区平均γ通过率下降明显,最低为(82.59±16.16)%;各危及器官平均γ通过率仍可达98%以上。结论:本研究结果充分验证CBCT图像剂量计算精度,为自适应放疗中采用CBCT图像直接进行剂量计算奠定一定基础。  相似文献   

4.
研究在千伏级锥形束CT(CBCT)图像中不同的能量对X-ray Voxel Monte Carlo(XVMC)算法剂量计算精度的影响。采用CIRS062模体刻度CT和CBCT图像的CT值-相对电子密度表,用头颈部人体仿真模体(CDP)在相同摆位条件下分别行CT和CBCT扫描,并在CDP中模拟局部进展期鼻咽癌病例,在Monaco计划系统中设计IMRT计划,选取的能量包括6MV和15MV光子,用XVMC算法分别对CT和CBCT图像进行剂量计算,排除旋转摆位误差等其他因素带来的误差后对CT和CBCT计划的结果进行比较,并分析能量因素产生的影响。DVHs、靶区和危及器官受量的比较以及靶区剂量适型度和均匀性的比较均显示了CT和CBCT计划有较好的符合度,从多数评估指标来看,15MV能量时CT和CBCT计划的偏差更小。对CT和CBCT计划的剂量分布的比较采用γ分析,标准是2mm/2%,阈值是10%,6MV能量时各个平面的平均通过率分别是99.3%±0.47%,15MV能量时则是99.4%±0.44%。显示出CBCT图像重新进行相对电子密度刻度后用XVMC算法进行剂量计算时具有良好的精度,选用15MV能量时计算结果精度更高。  相似文献   

5.
目的:探讨新型低剂量迭代重建技术应用于放疗定位图像的可行性。方法:基于体模的实验数据,对CT辐射剂量进行分析。对CT值、低对比度分辨率、噪声、均匀性以及几何畸变各项质量评价参数进行定量的分析。对仿真体模进行迭代重建技术扫描重建,并在放射治疗计划系统中对仿真体模进行模拟剂量计算,分析感兴趣体积的绝对剂量和平面内剂量的Gamma通过率。结果:低剂量迭代重建技术能够在保证图像质量的同时减少约60%的CT扫描辐射剂量。当管电压保持不变时,低剂量迭代重建技术对TPS剂量计算的准确性的影响可以忽略不计,感兴趣体积剂量最大差异0.6%,面剂量的Gamma通过率优于99.82%。低剂量迭代重建技术对图像低对比度分辨率有一定影响,需要进一步结合临床影像进行分析。结论:低剂量迭代重建技术可以应用于放疗定位图像中,但是需要注意图像特性和某些图像质量的改变,建议与PET-CT、超声、核磁等检查手段结合综合考虑确定靶区范围。 【关键词】低剂量迭代重建;放射治疗;定位图像  相似文献   

6.
针对锥形束CT(CBCT)图像质量受散射影响比较严重的情况,提出一种基于旋转准直器的CBCT散射矫正方法。该方法在射线源和模体之间放置一个圆形的旋转准直器,并通过准直器的旋转使透过准直器的射线不断沿轴向来回扫描,以获取整个容积图像的投影图像信息,然后利用投影图像的遮挡区域估计整幅图像的散射信息并将其从投影图像中去除,最后利用改进FDK算法重建图像。结果表明,与CBCT图像相比,散射矫正后的重建图像CBCT值的均方根误差从16.00%下降为1.18%,杯状伪影从14.005%下降为0.660%,峰值信噪比从16.959 4提高到31.450 0。CBCT图像质量得到明显提高。  相似文献   

7.
目的:利用蒙特卡罗方法分析透射平面上散射光子的物理性质以及非均匀模体厚度对散射核的影响,为基于电子射野影像设备(EPID)的在体剂量验证研究提供基础。方法:利用EGSnrc建立笔形束散射核模型,并模拟获得X射线穿过非均匀模体(水肺水/水骨水模体)以及相应等效厚度水模后30 cm处透射平面上的多种散射线能量注量分布,并分析水肺水/水骨水模体与其等效厚度水模体在散射线能量注量分布上的差异。结果:散射核中一阶康普顿散射线最大能量注量在1×10-4 MeV·cm-2数量级,当离轴距离为8~12 cm时下降至最大值的一半,而散射核中其它散射线能量注量最大值在1×10-5 MeV·cm-2数量级附近或以下。对于水肺水/水骨水模体,散射核能量注量相对偏差变化为±1.2%~±11.5%,且随模体非均匀层厚度增大而增大。结论:散射核中一阶康普顿散射线占比最大,同时也贡献了大部分能量注量相对偏差,在通过散射核来重建非均匀模体后EPID平面上的射线分布时,应着重考虑一阶康普顿散射线对重建结果的影响,并对其进行有效的修正。  相似文献   

8.
目的:利用高、低能锥形束CT(CBCT)的线性混合图像校正射线硬化,以提高相对电子密度值(RED)的准确性。方法:使用Elekta公司Synergy加速器的CBCT系统成像,高、低能X线峰值管电压分别为120和70 kV,对比单能CBCT图像采用100 kV。使用铝梯测量高、低能X线穿过不同厚度铝材料的衰减,利用迭代扰动法得到能谱分布,进而确定高、低能图像的最优线性混合系数,得到混合图像HU_(mix),用此图像作为新的CBCT图像,建立HU_(mix)-RED校准曲线,计算物质的RED。使用Catphan 500模体、一个头部仿真模体和一个骨盆部仿真模体进行实验,验证本方法的准确性。结果:头部和骨盆部Catphan 500模体实验得到的RED与理论值的相关系数分别为0.995和0.975,优于单能CBCT(0.975和0.953)。头、骨盆部仿真模体实验也显示,较单能CBCT成像方法,本研究提出的方法能有效减少射线硬化伪影,更准确地测量物质的RED。结论:建立了一种CBCT双能线性混合成像方法,可以较准确地测量物质的RED,为提高自适应放射治疗的精度提供了技术支持。  相似文献   

9.
目的:研究立体定向放射治疗中Elekta立体定位体架(ESBF)对靶区吸收剂量的影响。方法:将小水箱放入ESBF内做CT扫描,图像传至PrecisePlan计划系统三维重建数字化体模。计算6MV、15MVX线存在和不存在立体定位体架时靶区吸收剂量的差别,并与水箱中的测量值进行比较。结果:TPS计算结果显示对于两侧野,当等中心坐标Y150mm时吸收剂量的差别为5.4%~5.7%;当Y150mm时为9.0%~9.3%。利用后野照射时靶点吸收剂量差别为2.2%~2.4%,后斜野为2.6%~2.9%。两档能量X线计算值无明显差异。水箱测量结果显示,当两侧野Y150mm时剂量差别没有明显变大;两后斜野215°野的差别大于145°野;且15MV的差别均小于6MV。结论:射线经过Elekta立体定位体架时由于衰减会对靶区的吸收剂量造成影响。PrecisePlan剂量计算算法能够根据坐标值对体架影响做出修正,但与测量值存在偏差,实际照射时需要根据测量结果进行修正。  相似文献   

10.
目的:探讨锥形束CT(CBCT)影像引导鼻咽癌调强放疗的摆位误差及建立个体化调强计划剂量验证方法。方法:利用X线千伏锥形束CT对32例鼻咽癌调强放疗患者进行426次治疗前扫描,通过图像融合软件将计划CT与CBCT影像匹配,得到靶区中心的摆位误差,在线修正后,重新扫描得到116次CBCT影像,再匹配后得到修正后靶区偏差;在治疗完成后,重新扫描36次,得到治疗后靶区偏差中心。通过修正固体水模测试和矩阵电离室的参数,可验证高剂量区、低剂量区、中心点、均匀区和高梯度区域的绝对剂量;利用Gama分析得到单野和个体计划的通过评价率。结果:对32例鼻咽癌426次CBCT扫描中,三个方向偏差,X(左右)、Y(上下),Z(前后)分别为(0.44±2.03)mm、(0.51±2.75)mm、(-0.37±2.14)mm;当三个方向大于2 mm时进行位置修正,修正后重新进行CBCT扫描和匹配得到新的三个方向的偏差,X为(0.07±0.59)mm、Y为(0.07±0.80)mm、Z为(-0.02±0.75)mm;治疗完成后再扫描36次,匹配得到的偏差三个方向X、Y、Z分别为(0.19±0.59)mm、(0.15±0.73)mm、(-0.08±0.72)mm;用矩阵电离室验证调强计划相对剂量,对于单野,Gamma值为88.2%~99.2%,对于整个计划Gamma值为90.2%~99.7%。绝对剂量验证主要是对等中心点、剂量均匀区、高剂量区、较低剂量区、高梯度区选择5个点进行检测共完成160个点,百分偏差范围为-3.9%~4.2%。结论:通过在线的摆位修正和调强计划的个体化验证,可保证鼻咽癌调强放疗的位置和剂量的准确;利用摆位误差计算得到的CTV-PTV外扩边界,可能对增加疗效和减小正常器官副反应有重要意义。  相似文献   

11.
Megavoltage cone-beam CT (MV CBCT) is used for three-dimensional imaging of the patient anatomy on the treatment table prior to or just after radiotherapy treatment. To use MV CBCT images for radiotherapy dose calculation purposes, reliable electron density (ED) distributions are needed. Patient scatter, beam hardening and softening effects result in cupping artifacts in MV CBCT images and distort the CT number to ED conversion. A method based on transmission images is presented to correct for these effects without using prior knowledge of the object's geometry. The scatter distribution originating from the patient is calculated with pencil beam scatter kernels that are fitted based on transmission measurements. The radiological thickness is extracted from the scatter subtracted transmission images and is then converted to the primary transmission used in the cone-beam reconstruction. These corrections are performed in an iterative manner, without using prior knowledge regarding the geometry and composition of the object. The method was tested using various homogeneous and inhomogeneous phantoms with varying shapes and compositions, including a phantom with different electron density inserts, phantoms with large density variations, and an anthropomorphic head phantom. For all phantoms, the cupping artifact was substantially removed from the images and a linear relation between the CT number and electron density was found. After correction the deviations in reconstructed ED from the true values were reduced from up to 0.30 ED units to 0.03 for the majority of the phantoms; the residual difference is equal to the amount of noise in the images. The ED distributions were evaluated in terms of absolute dose calculation accuracy for homogeneous cylinders of different size; errors decreased from 7% to below 1% in the center of the objects for the uncorrected and corrected images, respectively, and maximum differences were reduced from 17% to 2%, respectively. The presented method corrects the MV CBCT images for cupping artifacts and extracts reliable ED information of objects with varying geometries and composition, making these corrected MV CBCT images suitable for accurate dose calculation purposes.  相似文献   

12.
The clinical applications of kilovoltage x-ray cone-beam computed tomography (CBCT) have been compromised by the limited quality of CBCT images, which typically is due to a substantial scatter component in the projection data. In this paper, we describe an experimental method of deriving the scatter kernel of a CBCT imaging system. The estimated scatter kernel can be used to remove the scatter component from the CBCT projection images, thus improving the quality of the reconstructed image. The scattered radiation was approximated as depth-dependent, pencil-beam kernels, which were derived using an edge-spread function (ESF) method. The ESF geometry was achieved with a half-beam block created by a 3 mm thick lead sheet placed on a stack of slab solid-water phantoms. Measurements for ten water-equivalent thicknesses (WET) ranging from 0 cm to 41 cm were taken with (half-blocked) and without (unblocked) the lead sheet, and corresponding pencil-beam scatter kernels or point-spread functions (PSFs) were then derived without assuming any empirical trial function. The derived scatter kernels were verified with phantom studies. Scatter correction was then incorporated into the reconstruction process to improve image quality. For a 32 cm diameter cylinder phantom, the flatness of the reconstructed image was improved from 22% to 5%. When the method was applied to CBCT images for patients undergoing image-guided therapy of the pelvis and lung, the variation in selected regions of interest (ROIs) was reduced from >300 HU to <100 HU. We conclude that the scatter reduction technique utilizing the scatter kernel effectively suppresses the artifact caused by scatter in CBCT.  相似文献   

13.
Kilovoltage (kV) cone beam computed tomography (CBCT) images suffer from a substantial scatter contribution. In this study, Monte Carlo (MC) simulations are used to evaluate the scattered radiation present in projection images. These predicted scatter distributions are also used as a scatter correction technique. Images were acquired using a kV CBCT bench top system. The EGSnrc MC code was used to model the flat panel imager, the phantoms, and the x-ray source. The x-ray source model was validated using first and second half-value layers (HVL) and profile measurements. The HVLs and the profile were found to agree within 3% and 6%, respectively. MC simulated and measured projection images for a cylindrical water phantom and for an anthropomorphic head phantom agreed within 8% and 10%. A modified version of the DOSXYZnrc MC code was used to score phase space files with identified scattered and primary particles behind the phantoms. The cone angle, the source-to-detector distance, the phantom geometry, and the energy were varied to determine their effect on the scattered radiation distribution. A scatter correction technique was developed in which the MC predicted scatter distribution is subtracted from the projections prior to reconstruction. Preliminary testing of the procedure was done with an anthropomorphic head phantom and a contrast phantom. Contrast and profile measurements were obtained for the scatter corrected and noncorrected images. An improvement of 3% for contrast between solid water and a liver insert and 11% between solid water and a Teflon insert were obtained and a significant reduction in cupping and streaking artifacts was observed.  相似文献   

14.
Accurate scatter correction is required to produce high-quality reconstructions of x-ray cone-beam computed tomography (CBCT) scans. This paper describes new scatter kernel superposition (SKS) algorithms for deconvolving scatter from projection data. The algorithms are designed to improve upon the conventional approach whose accuracy is limited by the use of symmetric kernels that characterize the scatter properties of uniform slabs. To model scatter transport in more realistic objects, nonstationary kernels, whose shapes adapt to local thickness variations in the projection data, are proposed. Two methods are introduced: (1) adaptive scatter kernel superposition (ASKS) requiring spatial domain convolutions and (2) fast adaptive scatter kernel superposition (fASKS) where, through a linearity approximation, convolution is efficiently performed in Fourier space. The conventional SKS algorithm, ASKS, and fASKS, were tested with Monte Carlo simulations and with phantom data acquired on a table-top CBCT system matching the Varian On-Board Imager (OBI). All three models accounted for scatter point-spread broadening due to object thickening, object edge effects, detector scatter properties and an anti-scatter grid. Hounsfield unit (HU) errors in reconstructions of a large pelvis phantom with a measured maximum scatter-to-primary ratio over 200% were reduced from -90 ± 58 HU (mean ± standard deviation) with no scatter correction to 53 ± 82 HU with SKS, to 19 ± 25 HU with fASKS and to 13 ± 21 HU with ASKS. HU accuracies and measured contrast were similarly improved in reconstructions of a body-sized elliptical Catphan phantom. The results show that the adaptive SKS methods offer significant advantages over the conventional scatter deconvolution technique.  相似文献   

15.
A phantom study was performed in full-field digital mammography to investigate the opportunity and the magnitude of a possible dose reduction that would leave the image quality above the accepted thresholds associated with some classical phantoms. This preliminary work is intended to lay the groundwork for a future clinical study on the impact of dose reduction on clinical results. Three different mammography phantoms (ACR RMI 156, CIRS 11A and CDMAM 3.4) were imaged by a full-field digital mammography unit (GE Senographe 2000D) at different dose levels. Images were rated by three observers with softcopy reading and scoring methods specific to each phantom. Different types of data analysis were applied to the ACR (American College of Radiology) and the other two phantoms, respectively. With reference to the minimum acceptance score in screen/film accreditation programmes, the ACR phantom showed that about 45% dose reduction could be applied, while keeping the phantom scores above that threshold. A relative comparison was done for CIRS and CDMAM, for which no threshold is defined. CIRS scoring remained close to the reference level down to 40% dose reduction, the inter- and intra-observer variability being the main source of uncertainty. Contrast-detail curves provided by CDMAM overlapped down to 50% dose reduction, at least for object contrast values ranging between 30% and 3%. This multi-phantom study shows the potential of further reducing the dose in full-field digital mammography beyond the current values. A common dose reduction factor around 50% seems acceptable for all phantoms. However, caution is required before extrapolating the results for clinical use, given the limitations of these widely used phantoms, mainly related to their limited dynamic range and uniform background.  相似文献   

16.
On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. Here we evaluate the achievable accuracy in using a kV CBCT for dose calculation. Relative electron density as a function of HU was obtained for both planning CT (pCT) and CBCT using a Catphan-600 calibration phantom. The CBCT calibration stability was monitored weekly for 8 consecutive weeks. A clinical treatment planning system was employed for pCT- and CBCT-based dose calculations and subsequent comparisons. Phantom and patient studies were carried out. In the former study, both Catphan-600 and pelvic phantoms were employed to evaluate the dosimetric performance of the full-fan and half-fan scanning modes. To evaluate the dosimetric influence of motion artefacts commonly seen in CBCT images, the Catphan-600 phantom was scanned with and without cyclic motion using the pCT and CBCT scanners. The doses computed based on the four sets of CT images (pCT and CBCT with/without motion) were compared quantitatively. The patient studies included a lung case and three prostate cases. The lung case was employed to further assess the adverse effect of intra-scan organ motion. Unlike the phantom study, the pCT of a patient is generally acquired at the time of simulation and the anatomy may be different from that of CBCT acquired at the time of treatment delivery because of organ deformation. To tackle the problem, we introduced a set of modified CBCT images (mCBCT) for each patient, which possesses the geometric information of the CBCT but the electronic density distribution mapped from the pCT with the help of a BSpline deformable image registration software. In the patient study, the dose computed with the mCBCT was used as a surrogate of the 'ground truth'. We found that the CBCT electron density calibration curve differs moderately from that of pCT. No significant fluctuation was observed in the calibration over the period of 8 weeks. For the static phantom, the doses computed based on pCT and CBCT agreed to within 1%. A notable difference in CBCT- and pCT-based dose distributions was found for the motion phantom due to the motion artefacts which appeared in the CBCT images (the maximum discrepancy was found to be approximately 3.0% in the high dose region). The motion artefacts-induced dosimetric inaccuracy was also observed in the lung patient study. For the prostate cases, the mCBCT- and CBCT-based dose calculations yielded very close results (<2%). Coupled with the phantom data, it is concluded that the CBCT can be employed directly for dose calculation for a disease site such as the prostate, where there is little motion artefact. In the prostate case study, we also noted a large discrepancy between the original treatment plan and the CBCT (or mCBCT)-based calculation, suggesting the importance of inter-fractional organ movement and the need for adaptive therapy to compensate for the anatomical changes in the future.  相似文献   

17.
In this work, the image quality of a novel megavoltage cone-beam-computed tomography (CBCT) scanner is compared to three other image-guided radiation therapy devices by analysing images of different-sized quality assurance phantoms. The following devices are compared in terms of image uniformity, signal-to-noise ratio, contrast-to-noise ratio (CNR), electron density to HU conversion, presampling modulation transfer function (MTF(pre)) and combined spatial resolution and noise (Q-factor): (i) the Siemens Artiste kilovoltage (kV) (121 kV) CBCT device, (ii) the Artiste treatment beam line (TBL), 6 MV, (iii) the Tomotherapy (3.5 MV) fan-beam CT and (iv) Siemens' novel approach using a carbon target for a dedicated imaging beam line (IBL), 4.2 MV. Machine settings were selected to produce the same imaging dose for all devices. For a head phantom, IBL scans display CNR values 2.6 ± 0.3 times higher than for the TBL at the same dose level (for a CT-number range of -200 to -60 HU). kV CBCT, on the other hand, displays CNR values 7.9 ± 0.3 times higher than the IBL. There was no significant deviation in spatial resolution between IBL, TBL and Tomotherapy in terms of 50% and 10% MTF(pre). For kV CBCT, the MTF(pre) was significantly higher than those for other devices. In our Q-factor analysis, the IBL (14.6) scores higher than the TBL (7.9) and Tomotherapy (9.7) due to its lower noise level. The linearity of electron density to HU conversion is demonstrated for different-sized phantoms. Employing the IBL instead of the TBL significantly reduces the imaging dose by up to a factor of 5 at a constant image quality level, providing an immediate benefit for the patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号