首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
采用掺加聚丙烯纤维和聚合物乳液对水泥砂浆进行改性.运用正交实验直观分析的方法,确定了聚丙烯纤维聚合物乳液改性水泥砂浆材料成分的最佳配比,并且对改性水泥砂浆进行了力学性能研究.实验结果表明,掺加一定量的聚丙烯纤维和聚合物乳液,可以提高水泥砂浆的力学性能,并且得出其作用机理.  相似文献   

2.
采用二步法制备不同纤维掺量的短切芳纶纤维增强水泥砂浆试样,研究添加剂羧甲基纤维素钠(CMC)和硅微粉对复合材料力学性能的影响.结果表明:羧甲基纤维素钠能够有效地促进纤维在水中的分散,进而促进其在水泥砂浆中的分散;掺加一定量的硅微粉能够进一步提高试样的压缩强度.当纤维体积分数为5%时,试样的力学性能最好,弯曲强度从2.6 MPa提高到了8.3 MPa,压缩强度也从29.5 MPa提高到了54.3 MPa.  相似文献   

3.
利用氯磺酸、醋酸酐对芳纶短切纤维进行了改性处理,再用处理后的纤维配抄芳纶纸,探讨了处理工艺对芳纶纸力学性能的影响.结果表明,当氯磺酸浓度为2%,处理时间为10min,处理温度为50℃时,芳纶纸的力学性能较好.用100%的醋酸酐对芳纶纤维进行处理然后配抄成纸,所得纸张的抗张指数和撕裂指数分别提高了63.8%和21.4%.另外,芳纶纤维经过醋酸酐浸泡1min后再用甲醇处理3min,芳纶纸的抗张指数和撕裂指数分别提高了84.7%和38.4%.  相似文献   

4.
利用磷酸、硅烷偶联剂、硝化/还原改性剂等对芳纶纤维进行改性,再以改性后的芳纶纤维配抄芳纶纸,探讨芳纶纤维表面改性及其对芳纶纸物理性能的影响.结果表明,上述3种改性方法均可以改善芳纶纤维与芳纶浆粕界面的结合,从而提高芳纶纸的强度.  相似文献   

5.
芳纶纤维表面改性研究进展   总被引:2,自引:0,他引:2  
分析了芳纶纤维目前存在的问题,综述了芳纶的各种改性技术进展,包括表面涂层、化学改性、物理改性等,并展望了芳纶纤维改性技术的发展前景.  相似文献   

6.
针对水泥砂浆容易干缩开裂的问题,采用聚丙烯纤维和聚合物乳液对水泥砂浆进行改性,并对改性的水泥砂浆抗干缩开裂性能进行了实验研究.实验结果表明:在本实验条件下,掺加适量的聚丙烯纤维和聚合物乳液,可以有效地提高水泥砂浆抗干缩开裂性能.该研究是对聚丙烯纤维聚合物乳液改性水泥砂浆机理的初步探讨.  相似文献   

7.
随着高新技术行业的发展,芳纶纤维以高强高模、密度小、耐高温耐腐蚀等优异性能得到了广泛的应用,介绍了芳纶纤维的结构、性能及应用。改变芳纶纤维表面性质能有效发挥芳纶纤维在复合材料中的优异性能,阐述了芳纶纤维的物理和化学表面改性方法,分析了各种改性方法在应用上的优点和缺点。结合我国芳纶纤维生产的实际情况,对芳纶纤维的改性研究进行展望。  相似文献   

8.
简述了芳纶纤维的品种及性能,分析了当前国内外芳纶纤维的发展现状,概述了芳纶纤维的生产方法,详细叙述了超声波、等离子体、高能射线、紫外辐照、涂覆的物理方法和表面刻蚀、表面接枝、超临界二氧化碳改性、络合改性的化学方法对芳纶纤维表面的改性研究。简述了当前芳纶纤维的主要应用领域,并结合我国芳纶纤维生产的实际情况,进行了展望。  相似文献   

9.
芳纶纤维性能优异,但是其应用于复合材料必须进行表面改性。论述了芳纶纤维的改性方法,包括物理改性、化学改性及其他改性方法,并预测芳纶纤维表面改性的发展方向。  相似文献   

10.
为了提高芳纶1313(Poly-m-phenyleneisophthalamide,以下简称PMIA)纤维在日光下的使用寿命,作者将紫外线吸收剂添加到纺丝原液中,通过湿法纺丝制得了耐紫外线芳纶1313纤维,并对纤维老化前后的力学性能进行了测试分析.研究表明,所报道的制备方法在赋予芳纶1313纤维耐紫外线性能的同时对其力学性能无明显影响,在芳纶纤维工业化生产过程中通过共聚或者共混的方法引入紫外线吸收剂改善其耐紫外线性能是可行的.  相似文献   

11.
预应力芳纶纤维布加固混凝土梁的疲劳试验   总被引:2,自引:0,他引:2  
对带永久锚具的预应力芳纶纤维布加固混凝土梁的疲劳性能做了初步研究.通过4根混凝土梁的疲劳试验,对比了带永久锚具的预应力芳纶纤维布加固的混凝土梁与非预应力芳纶纤维布加固的混凝土梁的疲劳破坏形态、疲劳寿命、挠度和应变发展等力学性能,分析了芳纶纤维布的预应力水平对试件疲劳性能的影响.试验结果表明,预应力芳纶纤维布加固的试验梁与非预应力芳纶纤维布加固的基准梁相比,其疲劳寿命提高了33%~74%;加固梁的疲劳破坏源于受拉纵筋的疲劳破坏,纤维布的疲劳性能优于钢筋的疲劳性能.在试验研究基础上,建立了预应力芳纶纤维布加固混凝土梁的疲劳寿命计算公式.  相似文献   

12.
为提高芳纶Ⅲ/环氧复合材料界面粘结强度,用乙酸酐分别在常温、50℃、75℃、100℃条件下对芳纶Ⅲ改性处理,分别用傅里叶变换红外光谱仪、扫描电子显微镜、X射线光电子能谱仪对改性前后芳纶Ⅲ纤维表面性质及性能进行表征.用处理前后的纤维与24A聚胺酯树脂按质量比为树脂∶纤维=1∶1.5的比例分别称取,将二甲苯溶解后的树脂溶液均匀地涂覆于处理过的纤维表面制成预浸料,然后用层压法将其制成复合材料.按照GB/T 1449-2005标准,分别测试其弯曲强度.结果表明:经改性处理过的纤维表面较未处理时含氧基团增加、表面变粗糙,制备的复合材料的弯曲强度较未处理时提高了35.8%.乙酸酐对芳纶Ⅲ改性处理的方法操作简便、效果显著,是一种非常有效的化学改性方法.  相似文献   

13.
综述了近5年芳纶纤维表面改性的研究进展,包括:表面接枝、表面刻蚀、共聚改性、氟气改性、络合改性、生物酶接枝改性等化学改性方法;表面涂层、等离子表面改性、γ射线辐射改性、超声浸渍、深冷处理、热处理、紫外线辐射改性、物理机械法改性等物理改性方法;超临界CO2与接枝改性协同,络合改性与表面涂层协同,表面涂层、水解与取代反应协同,低温等离子法与偶联剂协同,超临界CO2改性与热处理协同,水解与表面涂层协同,偶联剂与表面涂层协同,刻蚀与偶联剂协同等不同物理或化学改性方法结合的协同改性方法,并展望了芳纶纤维改性技术的发展前景.  相似文献   

14.
为了改善纤维与水泥基材的界面黏结,利用低温等离子技术对芳纶纤维作表面处理,通过场发射扫描电镜(FE-SEM)观察处理前后芳纶纤维表面形貌的变化;采用二步法制备短切芳纶纤维增强水泥砂浆试样,利用万能试验机测试低温等离子处理前后试样的弯曲强度的变化。结果表明:低温等离子处理能够有效地改善芳纶纤维的表面形貌;当处理功率为100 W时,芳纶/水泥砂浆复合材料试样的弯曲强度从8.3 MPa提高到了10.5 MPa,提高了26.4%;当处理时间为20 min时,试样的弯曲强度从8.3 MPa增加到9.7 MPa;继续提高处理功率和延长处理时间,试样的弯曲强度反而下降。  相似文献   

15.
为改善芳纶纤维复合材料的界面粘结性能,采用氧气等离子体对芳纶Ⅲ进行表面改性,制备了芳纶环氧复合材料,采用扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)分析、动态接触角(DCA)分析、测定拉伸强度、弯曲强度等测试方法来研究改性处理效果.结果表明:经等离子处理后,纤维表面m(O)/m(C)比提高,纤维表面粗糙度明显增大,与水的润湿角变小,弯曲强度较未处理提高了30%.  相似文献   

16.
废旧轮胎胶粉对水泥砂浆力学性能的影响   总被引:17,自引:0,他引:17  
研究了废旧轮胎胶粉的细度、掺量对水泥砂浆抗压强度的影响.利用不同的硅烷偶联剂对废轮胎胶粉进行了改性试验,并测定了改性胶粉对水泥砂浆力学性能的影响.研究结果表明:掺胶粉水泥砂浆28d抗压强度有明显下降,但掺量小于10%时,对水泥砂浆的早期强度几乎没有影响;在等掺量条件下,胶粉越细,砂浆强度越高;胶粉经改性后能明显改善掺胶粉水泥砂浆的力学性能.  相似文献   

17.
连续玄武岩纤维(CBF纤维)具有良好的力学性能、热学性能,同时因价格便宜、环保无污染而被广泛应用,但纤维表面光滑、粘结性差、表面呈现化学惰性,不利于与其他材料的复合应用。主要介绍了连续玄武岩纤维的五种改性方法:等离子体改性法、偶联剂改性法、表面涂层法、酸碱刻蚀法,以及在纤维生产中对浸润剂的改性以达到改性连续玄武岩纤维的方法。  相似文献   

18.
碳、芳纶纤维具有负的线热膨胀系数 ,用其增强水泥和混凝土不仅可以提高强度 ,改善其力学性能 ,而且还可以制约混凝土内部的温度变形 ,防止混凝土产生温度裂缝 本文应用有限单元法和有限差分法相结合的方法 ,对碳 /芳纶纤维增强混凝土的温度变形的控制机理进行了研究  相似文献   

19.
总结了芳纶纤维的性能、改性研究、染色印花性能研究发展现状,以及芳纶纤维在金属化、体育运动、柔性防刺防弹材料、航空航天材料等的应用及研究情况。  相似文献   

20.
为了研究聚丙烯酸酯乳液(PA)改性砂浆硬化过程中微观结构的形成过程及改性机理,分析PA聚合物乳液在新拌水泥砂浆中的吸附特性,并模拟孔隙溶液和PA乳液之间相互作用.同时采用扫描电子显微镜(SEM)和能谱分析(EDX)法表征了PA改性砂浆微观结构的演化过程.试验结果表明,PA颗粒将与孔隙溶液中的钙离子发生化学反应,PA聚合物将以不同的形态吸附在水泥砂浆的局部部位.在此基础上,考虑PA聚合物改性乳液与水泥基材料的反应,提出一种改进的聚合物改性与微观结构形成模型.这对研究聚合物改性水泥基材料的力学性能与推广聚合物改性水泥基材料在工程中的应用具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号