共查询到18条相似文献,搜索用时 69 毫秒
1.
基于改进拥挤距离的多目标进化算法 总被引:2,自引:1,他引:1
针对多目标进化算法的拥挤距离截断算子的分布度保持不足以及在二进制编码情况下较难收敛的缺点,提出一种改进的多目标进化算法,使用改进的拥挤距离截断算子和自适应变异算子,与经典的多目标进化算法进行对比,实验表明,该算法得到的Pareto解集具有良好的收敛性和分布性。 相似文献
2.
针对约束边界粒子在边界区域搜索能力不足的问题,提出一种基于自适应进化学习的约束多目标粒子群优化算法。该算法根据不符合约束条件粒子的约束违反程度,修正优化算法的进化学习公式,提高算法在约束边界区域的搜索能力;通过引入一种基于拥挤距离的Pareto最优解分布性动态维护策略,在不增加算法复杂度的前提下改进Pareto前沿的分布性。实验结果表明,所提出的算法可以获得具有更好收敛性、分布性和多样性的Pareto前沿。 相似文献
3.
4.
5.
针对现有多目标调度方法所需时间较长以及处理突发情况时性能降低的问题,提出一种基于模因优化和循环调度的多目标负载均衡技术.使用突发检测器检测发送到云服务器的用户请求,确定负载状态.基于测器结果,应用不同的负载平衡算法来高效地调度用户任务.利用选定的负载平衡算法将用户请求任务调度到资源最佳的虚拟机上,保证在最低的时间消耗内... 相似文献
6.
多目标粒子群优化(multi-objective particle swarm optimization,MOPSO)算法在维护收敛性的同时搜索分布良好的最优解集较为费力.为此,提出一种基于双重距离的MOPSO,由种群的平均距离定义粒子的邻域空间,邻域粒子数为粒子的等级,数量越多,粒子的等级越大.当等级相同时,算法结合粒子的拥挤距离选择最优粒子,并更新外部归档集.此外,算法结合粒子的变异行为避免陷入局部最优.在对比实验中,该算法在收敛性和多样性上可取得较优结果.最后,将该算法应用到电力系统的环境/经济调度模型(environmental/economic dispatch,EED),也可获得性能较好的解集. 相似文献
7.
8.
在制造业自动化、智能化生产模式的需求日益增加的趋势下,针对生产制造过程中生产工序安排不合理造成的生产效率低、资源浪费严重等问题,构建以最大完成时间和最大生产成本的智能优化调度模型,使用一种改进的NSGA-Ⅱ算法进行研究.通过MSOS染色体编码方案,将个体基因分成机器和工序两部分分别编码.种群初始化通过适当扩大种群的方式... 相似文献
9.
为了减少电费和碳排放,数据中心运营商开始建立就地绿色能源发电厂以进行供电.然而,负载的波动性、电价的时间差异性以及绿色能源的间歇性,给节约数据中心电费带来了挑战.针对以上问题,提出一种在线式负载调度算法,可以在不使用未来的负载、电价和绿色能源可用性信息的前提下,最小化数据中心的电费.首先,建立拥有就地绿色能源发电厂的数据中心的电费模型;然后,将数据中心电费最小化问题形式化为一个随机优化问题;最后,求解该优化问题得到相应的负载调度策略.基于真实数据的实验结果表明:该算法可以在保证负载性能的前提下,有效降低数据中心的电力成本. 相似文献
10.
11.
针对多目标粒子群算法全局最优值的选取缺陷以及多样性保留缺陷,提出了一种基于分解和拥挤距离的多目标粒子群优化算法(Smoeadpso).算法采用切比雪夫分解机制,将邻居向量对应的子问题的中的最优解来作为某个粒子全局最优值的候选解了更有效限制粒子飞行速度以避免粒子飞行超出解空间界限,引入了新的速度限制因子维持了种群多样性.本文算法与经典的多目标进化算法在10个测试函数上的对比结果表明, Smoeadpso求得的Pareto解集与真实Pareto解集的逼近程度有明显提升并且对于3目标问题求解的均匀性也比同类粒子群算法优秀. 相似文献
12.
多目标优化问题的粒子群算法仿真研究* 总被引:2,自引:2,他引:0
研究了一种用于求解多目标优化问题的粒子群算法(CMMOPSO)。该算法采用外部存档存储每一代产生的非劣解, 并且采用拥挤距离来维持外部存档规模, 同时提出一种新的全局最优粒子的选取策略(基于拥挤距离和收敛性距离)来提升粒子向Pareto前沿飞行的概率;为提升种群跳出局部最优解的能力, 以一定的概率对外部存档中粒子进行变异操作。通过典型的多目标测试函数对提出的算法进行检测, 结果表明,CMMOPSO算法在求解多目标问题上有一定的优势。因此, CMMOPSO可以作为求解多目标优化问题的有效算法。 相似文献
13.
论文提出了一种基于拥挤度和动态惯性权重聚合的多目标粒子群优化算法,该算法采用Pareto支配关系来更新粒子的个体最优值,用外部存档策略保存搜索过程中发现的非支配解;采用适应值拥挤度裁剪归档中的非支配解,并从归档中的稀松区域随机选取精英作为粒子的全局最优位置,以保持解的多样性;采用动态惯性权重聚合的方法以使算法尽可能地逼近各目标的最优解。仿真结果表明,该算法性能较好,能很好地求解多目标优化问题。 相似文献
14.
针对多目标差分进化算法在求解问题时收敛速度慢和均匀性欠佳的问题,提出了一种改进的排序变异多目标差分进化算法(MODE-IRM)。该算法将参与变异的三个父代个体中的最优个体作为基向量,提高了排序变异算子的求解速度;另外,算法采用反向参数控制方法在不同的优化阶段动态调整参数值,进一步提高了算法的收敛速度;最后,引入了改进的拥挤距离计算公式进行排序操作,提高了解的均匀性。采用标准多目标优化问题ZDTl~ZDT4,ZDT6和DTLZ6~DTLZ7进行仿真实验:MODE-IRM在总体性能上均优于MODE-RMO和PlatEMO平台上的MOEA/D-DE、RM-MEDA以及IM-MOEA;在世代距离(GD)、反向世代距离(IGD)和间隔指标(SP)性能度量指标方面,MODE-IRM在所有优化问题上的均值和方差均明显小于MODE-RMO。实验结果表明MODE-IRM在收敛性和均匀性指标上明显优于对比算法。 相似文献
15.
提出一种多目标自适应混沌粒子群优化算法(MACPSO). 首先, 基于混沌序列提出一种新型动态加权方法选择全局最优粒子; 然后, 改进NSGA-II 拥挤距离计算方法, 并应用到一种严格的外部存档更新策略中; 最后, 针对外部存档提出一种基于世代距离的自适应变异策略. 以上操作不仅提高了算法的收敛性, 而且提高了Pareto 最优解的均匀性. 实验结果表明了所提出算法的有效性.
相似文献16.
随着现代互联网数据中心的规模越来越大,数据中心面临着能耗、可靠性、可管理性与可扩展性等方面的挑战。同时,数据中心承载的服务多样,既有在线Web服务,也有离线批处理任务。在线任务要求较低的延迟,而离线任务要求较高的吞吐量。为了提高服务器利用率,降低数据中心能耗,当前数据中心往往将在线任务和离线任务混合部署到同一个计算集群中。在混部场景下,如何同时满足在线和离线任务的不同要求,是目前面临的关键挑战。分析了阿里巴巴于2018年发布的含有4034台服务器的混部计算集群在8天内的日志数据(cluster-trace-v2018),从静态配置信息、动态混部运行状态、离线批处理作业DAG依赖结构等出发,揭示其负载特征,包括任务倾斜与容器部署的相关关系等,根据任务依赖关系与关键路径,提出了相应的任务调度优化策略。 相似文献
17.
跨层资源优化是设计认知无线网络重要的一环,是典型的多目标优化问题。为此,提出一种自适应克隆与邻域选择优化算法解决认知无线网络中的资源优化分配问题。以使用带宽、消耗功率、数据传输速率等指标作为认知网络优化目标,并将其在算法中进行优化。通过2种典型测试函数的仿真比较,结果表明该算法能够有效解决认知无线网络中的频谱资源分配、功率控制及速率提升等多目标优化问题,且与SPEA-2算法和NNIA算法相比,具有明显的优越性。 相似文献
18.
基于局部搜索与混合多样性策略的多目标粒子群算法 总被引:2,自引:0,他引:2
为了提高算法的收敛性与非支配解集的多样性,提出一种基于局部搜索与混合多样性策略的多目标粒子群算法(LH-MOPSO).该算法使用增广Lagrange乘子法对非支配解进行局部搜索以快速接近Pareto最优解;利用基于改进的Maximin适应值函数与拥挤距离的混合多样性策略对非支配解集进行维护以保留解的多样性,同时引入高斯变异算子以避免算法早熟收敛;最后针对多目标约束优化问题,给出一种有效的约束处理方法.实验研究表明该算法具有良好的优化性能. 相似文献