首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用混凝和电絮凝工艺去除废水中的多种金属离子(Pb^2+、Cd^2+、Cu^2+、Ni^2+),研究混凝反应主要影响因素液相pH、混凝剂(PAC)投加量对各金属离子去除效率的影响,探讨废水pH、施加电流密度对各金属离子电絮凝去除效率的影响,阐明混凝和电絮凝多金属协同沉淀去除的机制。结果表明,PAC混凝去除废水中Pb^2+、Cd^2+、Cu^2+、Ni^2+的最佳pH为7.0,最佳投加量600mg/L,Pb^2+、Cu^2+去除效率远高于Cd2+、Ni2+;电絮凝反应金属离子去除的最佳pH为7.0,最佳电流密度为1.2~1.8mA/cm^2。混凝与电絮凝金属离子的去除效率与金属离子的半径、相对分子质量大小无关,而与金属离子的溶度积直接相关,金属离子的溶度积越低,混凝和电絮凝去除效率越高。电絮凝较混凝反应具有更高的金属离子去除效率。研究结果对于采用混凝和电絮凝工艺处理多金属污染废水具有借鉴和指导意义。  相似文献   

2.
[目的]研究纳米零价铁(NZⅥ)对水中Cr(Ⅵ)的脱除效果及影响Cr(Ⅵ)脱除的主要因素.[方法]以Cr(Ⅵ)为研究对象,采用NaBH<,4>液相还原Fe<'3+>制备纳米级零价铁(NZVI),分析了0.01、0.03、0.04、0.05、0.07 g的NZVI对初始浓度为10.0、20.0、30.0、50.0、70.0 mg/L,温度分别为15、20、25、30、40℃,pH分别为3、5、7、8、9条件下的Cr(Ⅵ)去除率的影响.[结果]纳米零价铁可在极低投加量下有效去除溶液中Cr(Ⅵ),在25℃、pH为5、常压、恒温振荡器转速200 r/min、NZVI加入量0.05 g/100 ml的条件下,水体中20 mg/LCr(Ⅵ)的去除率大于90%.[结论]纳米零价铁能快速去除水体中Cr(Ⅵ),溶液pH,Cr(Ⅵ)初始浓度,温度,投加量等是影响Cr(Ⅵ)脱除的主要因素.  相似文献   

3.
研究了以绿色廉价的保险粉(H2Na2S2O4)为还原剂、FeSO4为铁源,制备纳米零价铁(nZVI)并用于吸附废水中Cr(Ⅵ),考察了nZVI投加量、初始Cr(Ⅵ)质量浓度、模拟废水初始pH、反应时间和反应温度对Cr(Ⅵ)去除率的影响,并通过XRD、SEM对nZVI进行表征,结合吸附动力学、吸附等温线和颗粒内扩散模型试验探究去除机制。结果表明:所制得nZVI物相主要为α-Fe;在初始Cr(Ⅵ)质量浓度20 mg/L、nZVI投加量300 mg、吸附时间15 min、不调节pH条件下,用nZVI吸附1 L含Cr(Ⅵ)模拟废水,Cr(Ⅵ)吸附量为98.52 mg/g,去除率可达99.8%;吸附效果良好,且Cr(Ⅵ)的去除速率随温度升高而加快;nZVI对Cr(Ⅵ)的吸附过程符合Langmuir模型和准二级动力学模型。  相似文献   

4.
研究了用聚吡咯(PPY)改性电解锰渣(EM R)制备吸附材料EM R-PPY并用以从废水中吸附去除Cr(Ⅵ),考察了吸附时间、初始Cr(Ⅵ)质量浓度、吸附剂加入量、溶液pH对EMR-PPY吸附去除Cr(Ⅵ)的影响,探讨了吸附过程的动力学和热力学.结果表明:在废水pH=2.0、EMR-PPY加入量1 g/L、初始Cr(Ⅵ)质量浓度150 mg/L条件下,Cr(Ⅵ)去除率达99.6%;吸附过程符合准二级动力学模型和Langmuir等温吸附模型,平衡状态下,理论最大吸附量为269 mg/g;吸附机制主要包括Cr2 O2-7与N+之间的静电作用、对Cr(Ⅵ)的还原作用、Cr2 O2-7与Cl-之间的离子交换作用;3次循环再生后,EMR-PPY对Cr(Ⅵ)的吸附量仍保持在100 mg/g以上,仍可继续使用.  相似文献   

5.
采用生物聚合硫酸铁絮凝剂对低浓度含铀废水进行絮凝试验研究,考察U(Ⅵ)溶液pH、絮凝剂投加量以及U(Ⅵ)初始浓度对絮凝效果的影响。结果表明,反应最佳pH范围在5~7,反应平衡时间为5min,其絮凝过程符合Lagergren准二级反应动力学模型。含铀废水经生物聚合硫酸铁絮凝处理过后,残余铀浓度低于《铀加工与燃料制造设施辐射防护规定》(EJ 1056—2005)中的排放限值(0.05mg/L)。  相似文献   

6.
研究了以钛酸丁酯Ti(n-C4H9O)为原料,无水乙醇为有机溶剂,采用溶胶-凝胶法制备钛柱化剂,再用所制备钛柱化剂对膨润土进行钛柱撑钠化改性。借助SEM与XRD表征了钛柱撑改性膨润土的结构和物相。考察了溶液pH、吸附时间、改性膨润土用量对电镀废水中Cr(Ⅵ)吸附去除的影响及反应动力学和热力学。结果表明:改性后膨润土对电镀废水中Cr(Ⅵ)的去除效果明显;对100 mL初始质量浓度4.0 mg/L、pH=4.0的含Cr(Ⅵ)溶液,在改性膨润土用量10 g/L、室温9 min条件下吸附,Cr(Ⅵ)吸附率达98.0%;废水pH对Cr(Ⅵ)去除效果影响较大;吸附过程可用Langmuir等温吸附模型描述,Cr(Ⅵ)饱和吸附量为3.05 mg/g,吸附反应以化学吸附为主;钛柱撑改性膨润土的循环使用性能还需进一步改进,后续应采取复合改性方式进一步提高其对Cr(Ⅵ)的去除能力。  相似文献   

7.
以活性炭纤维、异丙醇铝为原料,通过溶胶—凝胶法制备载铝改性活性炭纤维电极(ACF-Al),通过单因素和正交试验研究其对模拟废水中Cr(Ⅵ)的电吸附性能;采用XRD、FTIR、SEM对电极材料进行表征;达到吸附平衡后对电极进行再生。试验结果表明,电吸附Cr(Ⅵ)适宜工艺条件为:模拟废水初始浓度40mg/L、pH=2.5、电极电位0.3V、极板间距6mm、ACF-Al电极板面积100cm^2,Cr(Ⅵ)吸附率接近100%,比开路条件下提高了26.25个百分点;电吸附过程更符合Langmuir等温线模型和准二级动力学方程;对ACF-Al电极进行4次循环再生处理后,其对Cr(Ⅵ)的吸附率仍保持在87%以上。表征结果显示,活性氧化铝被成功负载到活性炭纤维表面,提高了其导电性,增强了Cr(Ⅵ)向电极板的定向迁移性,并在表面羧基、羟基等官能团的作用下,使Cr(Ⅵ)得到有效去除。  相似文献   

8.
采用了连续电絮凝工艺对焦化废水进行深度处理,考察了电流密度、溶液pH值、电解质密度和水力停留时间等工艺参数对脱色效率的影响。UV-Vis谱图证实了电絮凝能有效地对有机物进行降解和脱色。结果表明,电絮凝工艺对焦化废水脱色效果明显,当电流密度为30 mA/cm2,pH值为8.0,极板距为1.0 cm,支持电解质浓度为0.5 g/L,在25℃下反应80 min后脱色效率达91%以上。  相似文献   

9.
高炉渣对铬离子的吸附特性研究   总被引:3,自引:0,他引:3  
蒋艳红  马少健  廖芳艳 《有色矿冶》2005,21(Z1):155-156
采用振荡吸附试验,研究了高炉渣用量、粒度、溶液pH值、吸附时间、溶液初始浓度等因素对去除Cr3 效果的影响。结果表明:高炉渣对溶液中的Cr3 有较强的吸附作用,按铬与高炉渣质量比为1:400投加高炉渣,铬的去除率达到97%以上,完全达到污水综合排放标准。在废水pH值4-12范围内高炉渣能够很好地适应Cr3 初始浓度的变化,对吸附去除Cr3 保持较高而稳定的吸附去除率。由于高炉渣表面带负电,而Cr(Ⅵ)是以阴离子团存在,故其对Cr(Ⅵ)的吸附去除能力远远低于Cr3 的吸附去除能力。  相似文献   

10.
通过液相还原法制备玉米淀粉负载型纳米零价铁(CS-NZVI),利用SEM和XRD对材料进行了表征,并且探究了不同溶液pH、U(Ⅵ)初始浓度、CS-NZVI浓度、温度、反应时间对U(Ⅵ)去除效果的影响。结果表明,CS-NZVI整体分散性较好,相较于NZVI团聚情况明显改善。在溶液pH=6.0、U(Ⅵ)初始浓度10.0 mg/L、CS-NZVI浓度0.4 g/L、温度30 ℃、反应时间140 min时,CS-NZVI材料对溶液中U(Ⅵ)的去除率为95.05%,去除量为24.86 mg/g。  相似文献   

11.
研究了以糯米粉为载体、采用液相还原法制备包覆型复合材料糯米粉-纳米零价铁(nZVI),并用于去除溶液中以UO_2~(2+)形式存在的U(Ⅵ)。采用扫描电镜(SEM)表征材料的微结构,并考察溶液pH、糯米粉-nZVI用量、温度、反应时间及U(Ⅵ)初始质量浓度等因素对铀去除效果的影响。结果表明:在溶液U(Ⅵ)初始质量浓度为10mg/L、溶液pH=6、温度30℃、材料投加量0.4g/L、反应120min条件下,U(Ⅵ)去除率达96.4%,吸附量为18.73mg/g;U(Ⅵ)初始浓度越高,U(Ⅵ)去除效果越好,糯米粉-nZVI可用于从溶液中吸附去除U(Ⅵ)。  相似文献   

12.
通过液相还原法制备玉米淀粉负载型纳米零价铁(CS-NZVI),利用SEM和XRD对材料进行了表征,并且探究了不同溶液pH、U(Ⅵ)初始浓度、CS-NZVI浓度、温度、反应时间对U(Ⅵ)去除效果的影响。结果表明,CS-NZVI整体分散性较好,相较于NZVI团聚情况明显改善。在溶液pH=6.0、U(Ⅵ)初始浓度10.0mg/L、CS-NZVI浓度0.4g/L、温度30℃、反应时间140min时,CS-NZVI材料对溶液中U(Ⅵ)的去除率为95.05%,去除量为24.86mg/g。  相似文献   

13.
研究了过氧化氢对载铁改性膨润土从废水中吸附Cr(Ⅵ)的影响。通过改变废水初始pH及过氧化氢浓度,考察载铁改性膨润土吸附Cr(Ⅵ)的机制,并利用SEM、FTIR观察分析吸附Cr(Ⅵ)前后的改性膨润土的形貌及结构。结果表明,废水pH在3~6范围内,添加一定浓度的过氧化氢能提升载铁改性膨润土对Cr(Ⅵ)的吸附能力,吸附率可达95%以上。对照试验结果表明,向载铁改性膨润土中添加过氧化氢有利于羟基的生成,可促进载铁改性膨润土对Cr(Ⅵ)的吸附。  相似文献   

14.
通过液相还原法制备了岩棉负载纳米零价铝(RW-NZVAl),利用SEM和XRD对材料进行了表征,探究了纳米零价铝负载量、溶液pH、U(Ⅵ)初始浓度、固液比、温度、反应时间等对RW-NZVAl去除溶液中U(Ⅵ)的影响。结果表明,RW-NZVAl对溶液中U(Ⅵ)有很好的去除效果,当岩棉与纳米零价铝质量比为4︰1、溶液pH=4.0、U(Ⅵ)初始浓度25 mg/L、固液比0.4 g/L、温度25 ℃、反应时间150 min时,RW-NZVAl对溶液中U(Ⅵ)的去除率为93.21%,去除量为58.26 mg/g。  相似文献   

15.
为了绿色高效处理含铀废水,研究了用液相还原法制备多硫化钙改性纳米零价铁(CPS@nZVI)材料并用于去除溶液中U(Ⅵ),考察了CPS@nZVI对溶液中U(Ⅵ)的去除效果。并通过SEM-EDS、XPS和XRD对材料的形貌和表面物质组成进行表征。结果表明:在溶液pH=3.5、U(Ⅵ)初始质量浓度10.0 mg/L、固液质量体积比0.5 g/1 L、反应温度25℃、反应时间120 min条件下,CPS@nZVI材料对溶液中U(Ⅵ)去除率为98.13%,去除量为19.53 mg/g; SEM-EDS、XPS、XRD表征结果表明,样品主要由Fe0、FeS组成;反应过程符合准二级动力学模型和Langmuir等温吸附模型,该吸附过程受化学吸附控制,为单分子层吸附;还原过程符合伪一级还原动力学,溶液中的U(Ⅵ)以吸附和还原沉淀2种方式去除。  相似文献   

16.
采用同步液相法制备纳米Fe/Ni双金属来去除溶液中的U(Ⅵ),通过BET、SEM等方法对双金属材料进行表征分析,用批试验法研究n(Fe)/n(Ni)比、pH、初始铀浓度、反应时间和温度对去除U(Ⅵ)的影响。结果表明,铁镍双金属体系去除U(Ⅵ)的最佳pH为3.5,反应平衡时间为30min,25℃时的饱和吸附量为161.91mg/g。  相似文献   

17.
以水热合成法制备CoFe_2O_4材料,考察溶液pH、固液比、时间、温度、初始U(Ⅵ)浓度等对CoFe_2O_4吸附溶液中U(Ⅵ)的影响。用扫描电镜(SEM)对材料进行表征,分析其去除U(Ⅵ)的机理。结果表明,CoFe_2O_4对U(Ⅵ)有很好的去除效果,在pH为5.5、固液比0.3g/L、反应时间120min、U(Ⅵ)溶液浓度30mg/L条件下,U(Ⅵ)最大吸附容量为73.9mg/g。  相似文献   

18.
吸附胶体浮选法是采用FeSO4为还原剂将Cr(Ⅵ)还原成Cr(Ⅲ),用NaOH调节pH值为6左右,使生成Fe(OH)3和Cr(OH)3沉淀。然后向该溶液中加入十二烷基磺酸钠(SLS)浮选剂直接进行浮选,重金属铬离子和表面活性剂反应产物以泡沫形式去除。本次实验做了20×10-6Cr(Ⅵ)合成废水的条件实验,用正交实验法确定了50×10-6Cr(Ⅵ)合成废水的浮选最佳条件,对实际废水进行了处理,其结果达到了国家工业废水排放标准(Cr6+<0.5mg/l)为工业上采用浮选法处理含铬废水提供了实验依据。  相似文献   

19.
电解锰废水中Cr~(6+)、Mn~(2+)的去除方法研究   总被引:1,自引:0,他引:1  
通过实验研究了还原沉淀-晶种曝气组合工艺去除电解锰废水中Cr6+和Mn2+,并探索了最佳工艺条件.首先以Na2SO3做还原剂将Cr6+转化为Cr3+后再通过化学沉淀法除去,然后采用加入MnO2做晶种曝气氧化去除废水中的Mn2+.结果表明:当Na2SO3投加量为0.5 g/L,还原反应pH值为4,还原反应时间6 min,Cr6+可完全转化为Cr3+.Cr3+在pH值为8时沉淀最完全,出水总铬浓度可从100 mg/L降到0.5 mg/L以下.除铬后,当MnO2投加量为25 g/L,废水pH值为9,曝气10 min,出水Mn2+浓度可从1 000 mg/L降到0.4 mg/L以下.通过以上处理出水总铬和总锰均达到我国《污水综合排放标准(GB8978-1996)》一级要求.  相似文献   

20.
吸附胶体浮选法在含铬(Ⅵ)废水处理中的应用与评价   总被引:3,自引:0,他引:3  
吸附胶体浮选法是采用FeSO4为还原剂将Cr(Ⅵ)还原成Cr(Ⅲ),用NaOH调节pH值为6左右,使生成Fe(OH)3和Cr(OH)3沉淀.然后向该溶液中加入十二烷基磺酸钠(SLS)浮选剂直接进行浮选,重金属铬离子和表面活性剂反应产物以泡沫形式去除.本次实验做了20×10-6Cr(Ⅵ)合成废水的条件实验,用正交实验法确定了50×10-6Cr(Ⅵ)合成废水的浮选最佳条件,对实际废水进行了处理,其结果达到了国家工业废水排放标准(Ce6+<0.5 mg/1)为工业上采用浮选法处理含铬废水提供了实验依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号