首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
ZnO bulk samples were implanted with 200 keV-Co ions at room temperature with two fluences, 1 × 1016 and 8 × 1016 cm?2, and then annealed in air for 30 min at different temperatures up to 900 °C. After the implantation and each annealing step, the samples were analyzed by Rutherford backscattering spectrometry (RBS) in random and channeling directions to follow the evolution of the disorder profile. The RBS spectra reveal that disorder is created during implantation in proportion to the Co fluence. The thermal treatments induce a disorder recovery, which is however, not complete after annealing at 900 °C, where about 15% of the damage remains. To study the Co profile evolution during annealing, the samples were, in addition to RBS, characterized by secondary ion mass spectrometry (SIMS). The results show that Co diffusion starts at 800 °C, but also that a very different behavior is seen for Co concentrations below and above the solubility limit.  相似文献   

2.
We grew 50 periodic SiO2/SiO2 + Ag multi-layers by electron beam deposition technique. The co-deposited SiO2 + Ag layers are 7.26 nm, SiO2 buffer layers are 4 nm, and total thickness of film was determined as 563 nm. We measured the thickness of the layers using in situ thickness monitoring during deposition, and optical interferometry afterwards. The concentration and distribution of Ag in SiO2 were determined using Rutherford backscattering spectrometry (RBS). In order to calculate the dimensionless figure of merit, ZT, the electrical conductivity, thermal conductivity and the Seebeck coefficient of the layered structure were measured at room temperature before and after bombardment with 5 MeV Si ions. The energy of the Si ions was chosen such that the ions are stopped deep inside the silicon substrate and only electronic energy due to ionization is deposited in the layered structure. Optical absorption (OA) spectra were taken in the range 200–900 nm to monitor the Ag nanocluster formation in the thin layers.  相似文献   

3.
Structure changes and light emission behavior in Er+ implanted SnO2:SiO2 layers are studied, using transmission electron microscopy (TEM), Rutherford backscattering (RBS) and cathodoluminescence (CL). SnO2:SiO2 layers of different composition deposited with RF magnetron sputtering on Si wafers were implanted with 200 keV Er+ to a fluence of 3 × 1015 cm?2 at room temperature. The implanted structures were then annealed at 600–1000 °C for 30 min, resulting in the formation of crystalline SnO2 nanoclusters. Cross-section TEM revealed a strong reduction of the SnO2 crystallite size down to several nanometers in the implanted area of the SnO2:SiO2 layer as compared to the undoped layer. In addition, a very narrow layer of SnO2 nanocrystals appears at the SiO2/Si interface. Several narrow CL emission peaks and wide bands were found which could be related to the decay of SnO2 free excitons, to oxygen deficiency centers in SiO2 and to transitions between the energy levels in the Er ions, apparently located at nanoclusters. The mechanisms of nanostructuring as well as the emission process are discussed.  相似文献   

4.
Thorough structural characterization of deep laying thin film, including the inference of interdiffusion profiles is frequently a complex problem. The use of RBS/PIXE holistic approaches, already shown to represent a powerful method, sometimes faces difficulties if standard experimental procedures are used. In this work, following a series of 4He Rutherford backscattering and 1H elastic backscattering experiments, carried out to study the influence of SrTiO3 as a possible cladding layer between Pt/TiO2/SiO2/(1 0 0)Si substrates and MgTiO3 films, a simple holistic RBS-PIXE is shown to be not enough for the solution of such a problem. Establishing of the Sr depth profile, was only possible after AFM, High-Resolution EDS PIXE and differential PIXE analysis were carried out. Results, problems faced and conclusions obtained are presented.  相似文献   

5.
Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm?2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.  相似文献   

6.
Tungsten-doped amorphous carbon films with 0–9 at.% W concentration were produced by magnetron sputtering and eroded in oxygen plasmas applying different bias voltages and substrate temperatures. The partial C and W erosion rates were determined from the C and W areal density changes measured by Rutherford backscattering spectrometry (RBS). The initial C removal rate increases with increasing ion energy and temperature and decreases with increasing W concentration. For W-doped films the erosion rate decreases with increasing plasma exposure duration. At low bias voltages the erosion process stops after W accumulation at the surface, which protects the carbon underneath from further erosion. RBS and X-ray photoelectron spectroscopy suggest that the W-rich layer at the surface is carbon free and consists of porous WO3. Biasing to 200 V leads to removal of W by physical sputtering and, therefore, inhibits the formation of the protecting W oxide layer and the C erosion proceeds.  相似文献   

7.
Hafnium ions were implanted into calcium fluoride single crystals. The lattice damage introduced by the implantation was investigated with the Rutherford backscattering (RBS) channelling technique. The lattice location of the implanted ions was determined by performing channelling measurements for the 〈1 1 0〉 crystal direction. A comparison of the angular scan with Monte Carlo simulations leads to the conclusion that >90% of the Hf ions are on Ca sites directly after implantation. Subsequent annealing of the samples was performed in a rapid thermal annealing apparatus. Perturbed angular correlation (PAC) measurements with 181Hf(181Ta) show quadrupole interactions with νQ1 = 300(3) MHz (η = 0.00), νQ2 = 1285(13) MHz (η = 0.43) and νQ3 = 1035(10) MHz (η = 0.00) after annealing up to 1200 K.  相似文献   

8.
500 nm SiO2 layers were implanted with 450 keV (F=3 × 1016 at./cm2) and 230 keV (F=1.8 × 1016 at./cm2) Ge ions at room temperature to obtain an almost constant Ge concentration of about 2.5 at.% in the insulating layer. Subsequently, the specimens were annealed at temperatures between 500°C and 1200°C for 30 min in a dry N2 ambient atmosphere. Cross-sectional TEM analysis reveal homogeneously distributed Ge nanoclusters arranged in a broad band within the SiO2 layer. Their mean cluster size varies between 2.0 and 6.5 nm depending on the annealing conditions. Cluster-free regions are always observed close to the surface of the specimens independent of the annealing process, whereas a narrow Ge nanocluster band appears at the SiO2/Si interface at high annealing temperatures, e.g. ⩾1000°C. The atomic Ge redistribution due to the annealing treatment was investigated with a scanning TEM energy dispersive X-ray system and Rutherford back scattering (RBS).  相似文献   

9.
Epitaxial ternary silicide Er0.49Gd0.51Si1.7 layers with a good crystalline quality (χmin of Er and Gd is 3.7%) have been formed by 60 keV Er and Gd ion implantation into Si(1 1 1) substrates to a total dose of 1.0 × 1017/cm2 at 450°C using channeled ion beam synthesis (CIBS). The composition, the structure, the strain and the thermal stability of these layers have been studied using energy dispersive spectroscopy (EDS), Rutherford backscattering (RBS)/channeling and X-ray diffraction (XRD). It is shown that the perpendicular and parallel elastic strains of the Er0.49Gd0.51Si1.7 epilayer are e=−0.46% ± 0.02% and e6=+0.73% ± 0.19%. The layer is stable up to 900°C. Annealing at 950°C results in a phase transformation.  相似文献   

10.
Epitaxial, hexagonal rare-earth silicides, such as ErSi1.7, can be formed using channeled ion beam synthesis. In the case of Gd-silicide, an orthorhombic GdSi2 phase exists at high temperature; the transition temperature is related to the thickness and crystalline quality of the silicide. In the case of the lightest rare-earth metals, such as Nd, silicides only exist in a tetragonal or orthorhombic phase, which cannot grow epitaxially on Si(1 1 1). However, introduction of a fraction of yttrium (YSi1.7 also possesses the aforementioned hexagonal lattice) drives the Nd–Si system into a hexagonal lattice structure. A combined backscattering and channeling spectrometry (RBS/C), X-ray diffraction (XRD) and transmission electron microscopy (TEM) study shows that an epitaxial, continuous ternary silicide is formed (and not a mixture of binaries) with a hexagonal structure, which is stable up to 950°C. Further annealing, however, results in a gradual transformation into polycrystalline phases. The experimental results are compared to total energy calculations of these (meta-)stable rare-earth silicides, using the density functional theory (DFT).  相似文献   

11.
Ge nanocrystals embedded in SiO2 matrix have been synthesized by swift heavy ion irradiation of Ge implanted SiO2 films. In the present study, 400 keV Ge+ ions were implanted into SiO2 films at dose of 3 × 1016 ions/cm2 at room temperature. The as-implanted samples were irradiated with 150 MeV Ag12+ ions with various fluences. Similarly 400 keV Ge+ ions implanted into Silicon substrate at higher fluence at 573 K have been irradiated with 100 MeV Au8+ ions at room temperature (RT). These samples were subsequently characterized by XRD and Raman to understand the re-crystallization behavior. The XRD results confirm the presence of Ge crystallites in the irradiated samples. Rutherford backscattering spectrometry (RBS) was used to quantify the concentration of Ge in the SiO2 matrix. Variation in the nanocrystal size as a function of ion fluence is presented. The basic mechanism of ion beam induced re-crystallization has been discussed.  相似文献   

12.
In this study the boron lattice site location in ternary BxGa1?xAs and BxGa1?xP thin films grown on (0 0 1) GaAs and (0 0 1) GaP, respectively, using low pressure metal-organic vapour-phase epitaxy (MOVPE) with boron concentrations between x = 0.8% and x = 3.2% was investigated with RBS and the 10B(α,p)13C nuclear reaction using a 2.3 MeV He+ ion beam. For this purpose, the ion beam was aligned with the [0 0 1], [0 1 1] and [1 1 1] axis and the RBS and proton yield from the nuclear reaction compared with random ion incidence. For comparison, theoretical proton yields which assume boron to be located on substitutional lattice sites only were calculated for each sample/axis combination and compared with the experimental yields. The RBS/channeling measurements show a very good crystal quality of the films with χmin being in the range of 3–5% for the [0 1 1] axis. The best crystal qualities, i.e. the lowest χmin values and dechanneling rates, are achieved for low boron concentrations. From NRA/channeling it can be deduced that in the BxGa1?xAs films the fraction of interstitial boron is approximately 5% for low boron concentrations of x = 1% and 6–10% for concentrations up to x = 3.2%, whereas the fraction of interstitial boron is less than 3% in the BxGa1?xP film studied despite a concentration of x = 2.0%. This indicates that antisite effects of the boron incorporation are more likely in GaAs compared to GaP.  相似文献   

13.
“Sialons” have several interesting mechanical, thermal and chemical properties which make them candidates for high temperature applications. Solid solutions in the Si–Al–O–N system were synthesised using nitrogen and oxygen implantation into Si33Al67, Si45Al55 and Si67Al33 thin films deposited by DC magnetron sputtering on glassy carbon substrates. Nitrogen has been implanted firstly at 50 and then at 20 keV, oxygen was post-implanted at 50 keV. The different implantation doses ranged from 1 to 10 × 1017 ions/cm2. High depth resolution profiles were obtained using RBS and resonant nuclear reaction, the chemical bonds were investigated using LEEIXS and these results are correlated to the film structure measured by cross section TEM. The TEM micrographs show a columnar structure perpendicular to the substrate surface in unimplanted coatings. Nevertheless, when nitrogen is implanted grain formation is observed and after oxygen post-implantation gas bubbles appear at the film depth where the maximum oxygen concentration is observed. The correlation of these results with RBS and LEEIXS measurements indicates that nitrogen should be enclosed in these bubbles. Nanohardness was also measured. The highest values are observed in samples post-implanted with 1 × 1017 O/cm2 where nanohardness increases from 3 to 10 Gpa.  相似文献   

14.
This work is an initial attempt to model the fundamental processes that occur when SiC is implanted at elevated substrate temperatures Ti (200°–800°) with high doses of N+ and Al+ ions to synthesise buried layers of (SiC)1  x(AlN)x. The theoretical treatment has involved ballistic calculation of the implant and damage profiles by means of computer codes (TRIRS and DYTRIRS) specifically developed for modelling complex, multi-elemental targets. The influence of the mechanical stress induced the by implanted ions has been taken into account by adding a special term to the differential equations describing the evolution of the implant and damage distributions. Results from the simulations have been correlated with data obtained by Rutherford backscattering spectrometry/ion channelling (RBS/C). The theoretical approach described has enabled one to determine the interaction energies of the interstitials with the internal stress field as well as the role of stress on the defect distribution.  相似文献   

15.
In order to evaluate stopping cross-section and energy straggling of protons in compound material SiC and its constituents C and Si, resonant backscattering spectra have been measured using proton beams in an energy range 4.9–6.1 MeV per a 100 keV step. We have observed two sharp nuclear resonances at proton energies of 4.808 MeV by 12C and 4.879 MeV by 28Si. By systematic analyses of the resonance peak profiles, i.e., energy shift of the peak position and broadening of the peak width, the values of the stopping cross-section and the energy straggling have been deduced to be compared with SRIM-2006 and Bohr’s prediction.  相似文献   

16.
A W-2Y2O3 material was developed in collaboration with the Plansee Company (Austria). An ingot of the material having approximate dimension of 95 mm × 20 mm was fabricated by mixing the elemental powders followed by pressing, sintering and hot forging. The microstructure of the W-2Y2O3 composite was investigated using transmission electron microscopy (TEM). The microhardness was studied using nano-indentation technique. We observed that the W-grains having a mean size of about 1 μm already formed and these grains contain very low density of dislocations. The size of the yttria particles was between 300 nm and 1 μm and the Berkovich hardness was about 4.8 GPa. The specimens were irradiated/implanted with Fe and He ions at JANNuS facility located at Orsay/Saclay, France. The TEM disks kept were irradiated/implanted at 300 and 700 °C using Fe and He ions with an energy of 24 and 2 MeV, respectively. The calculated radiation dose was about 5 dpa produced by Fe ions and total He content is 75 appm at both 300 and 700 °C. From the TEM investigation of irradiated samples, few radiation loops are present on the W grains, whereas on yttria particles, the radiation induced damages appear as voids. Berkovich hardness of the irradiated sample is higher than that of the non-irradiated sample. Results on the microstructure and microhardness of the ion-irradiated W-2Y2O3 composites are presented in detail.  相似文献   

17.
Crystallization processes of amorphous Fe–Si layers have been investigated using transmission electron microscopy (TEM). Si(1 1 1) substrates were irradiated with 120 keV Fe ions at ?150 °C to a fluence of 1.0 × 1017 cm2. An Fe-rich amorphous layer embedded in an amorphous Si was formed in the as-irradiated sample. Plan-view TEM observations revealed that a part of the amorphous Fe–Si layer crystallized to the metastable α-FeSi2 after thermal annealing at 350 °C for 8 h. The lattice parameter of c-axis decreased with thermal annealing. It was considered that the change in the lattice parameter originates from the decrease of the Fe occupancy at (0, 0, 1/2) and its equivalent positions in the unit cell of the metastable α-FeSi2.  相似文献   

18.
We have grown three different monolayer Co0.1SbxGey (x = 2, 4, 11 and y = 15, 7, 15) thin films on silica substrates with varying thickness between 100 and 200 nm using electron beam deposition. The high-energy (in the order of 5 MeV) Si ion bombardments have been performed on samples with varying fluencies of 1 × 1012, 1 × 1013, 1 × 1014 and 1 × 1015 ions/cm2. The thermopower, electrical and thermal conductivity measurements were carried out before and after the bombardment on samples to calculate the figure of merit, ZT. The Si ions bombardment caused changes on the thermoelectric properties of films. The fluence and temperature dependence of cross plane thermoelectric parameters were also reported. Rutherford backscattering spectrometry (RBS) was used to analyze the elemental composition of the deposited materials and to determine the layer thickness of each film.  相似文献   

19.
The effect of the strong centrifugal force, mega-gravity (MG) on inter-diffusion between Au and Cu thin films was studied by using Au(60 nm)/Cu(500 nm)/α-Al2O3 (0 0 0 1) films. The Rutherford backscattering analysis of the Au and Cu depth profiles shows that Cu atoms diffuse through the Au layer, resulting in the formation of the Cu layer on the surface under both the thermal annealing at 220 °C and the application of 0.61 × 106 G at 220 °C. The results indicate that the MG application enhances the layer thickness of the Cu layer on the surface.  相似文献   

20.
The interface reactions in an epitaxial 10 nm-thick Fe3O4/MgO(0 0 1) film were investigated by using Rutherford Backscattering spectrometry (RBS), channeling (RBS-C) and X-ray reflectometry (XRR). The as-grown film had a good crystallinity indicated by the minimum yield and the half-angle value for Fe, respectively, χmin(Fe) = 22% and ψ1/2(Fe) = 0.62°. Annealing the films under partial argon pressure up to 600 °C led to a large enhancement of Mg out-diffusion into the film forming a wustite-type phase, but the total layer thickness did not change much. Ion irradiation of the film by 1 MeV Ar ion beam caused a strong Fe ion mixing resulting in a large interfacial zone with a thickness of 23 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号