首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High resolution FTIR spectra of the short lived species ketenimine have been recorded in the regions 390-1300 cm(-1) and 20-110 cm(-1) using synchrotron radiation. Two thousand six hundred sixty transitions of the ν(7) band centered at 693 cm(-1) and 126 far-IR rotational transitions have been assigned. Rotational and centrifugal distortion parameters for the ν(7) mode were determined and local Fermi and b-axis Coriolis interactions with 2ν(12) are treated. A further refinement of the ground state, ν(12) and ν(8) parameters was also achieved, including the treatment of previously unrecognized ac-axis and ab-axis second order perturbations to the ground state.  相似文献   

2.
3.
We report the first rotationally resolved spectroscopic studies on PH3+(X2A2") using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000 cm(-1) above the ground vibrational state of PH3+(X2A2") have been recorded. We observed the vibrational energy level splittings of PH3+(X2A2") due to the tunneling effect in the inversion (symmetric bending) vibration (nu2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8 cm(-1). The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for nu2+ = 0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (nu2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (nu1+) and the degenerate bending vibration (nu4+). The fundamental frequencies for nu1+ and nu4+ are 2461.6 (+/-2) and 1043.9 (+/-2) cm(-1), respectively. The first IE for PH3 was determined as 79670.9 (+/-1) cm(-1).  相似文献   

4.
The high-resolution (0.001 cm(-1)) spectrum of thiirane has been recorded at the far-infrared beamline at the Australian synchrotron between 760-400 cm(-1) and 170-10 cm(-1). Ro-vibrational transitions of the highly Coriolis coupled ν(5) (628.1 cm(-1)) and ν(15) (669.7 cm(-1)) fundamentals, as well as pure rotational far-IR transitions have been assigned, and rotational, centrifugal distortion, and Coriolis interaction parameters determined. ν(15) gains the vast majority of its intensity from an interesting Coriolis intensity stealing mechanism, which is also outlined.  相似文献   

5.
By using a high-resolution infrared (IR) laser to prepare propyne (C(3)H(4)) in selected rotational levels of the excited nu(1) (acetylenic C-H stretching) vibration mode prior to vacuum ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) measurements, we have obtained rotationally resolved VUV-PFI-PE spectra for the C(3)H(4) (+)(X (2)E(32,12),nu(1) (+)=1) band. The analysis of these PFI-PE spectra leads to the determination of the spin-orbit constant of A=-13.0+/-0.2 cm(-1) for the C(3)H(4) (+)(X (2)E(32,12),nu(1) (+)=1) state. Using this A constant and the relative rotationally selected and resolved state-to-state photoionization cross sections thus measured, we have obtained an excellent simulation for the VUV-PFI-PE origin band of C(3)H(4) (+)(X (2)E(32,12)), yielding a value of 83 619.0+/-1.0 cm(-1) (10.367 44+/-0.000 12 eV) for the adiabatic ionization energy of C(3)H(4) [IE(C(3)H(4))]. The present two-color IR-VUV-PFI-PE study has also made possible the determination of the C-H stretching frequencies nu(1) (+)=3217.1+/-0.2 cm(-1) for C(3)H(4) (+)(X (2)E(32,12)). The spectral assignment and simulation were guided by high-level ab initio calculations on the IE(C(3)H(4)), Franck-Condon factors for photoionization transitions, and rotational constants and vibrational frequencies for C(3)H(4) (+).  相似文献   

6.
High-resolution FTIR spectra of the short lived species ketenimine have been recorded in the region 700-1300 cm(-1) and over 1500 transitions of the ν(10) and ν(6) modes have been assigned. Effective rotational and centrifugal distortion parameters for the v(10) = 1 and v(6) = 1 (excluding K(a) = 5) states were determined by co-fitting transitions, and treating strong a- and c-axis Coriolis interactions between them. Other perturbations attributed to interactions with the v(8) = 2 and v(12) = 1 + v(8) = 1 dark-states were also observed and treated. The ν(10) transitions are predicted to be inherently very weak, but are enhanced by an intensity stealing effect with the highly IR active ν(6) mode. A mechanism for this intensity stealing in ketenimine is also detailed.  相似文献   

7.
Two-photon, two-color double-resonance ionization spectroscopy combining synchrotron vacuum ultraviolet radiation with a tunable near-infrared (NIR) laser has been used to investigate gerade symmetry states of the nitrogen molecule. The rotationally resolved spectrum of an autoionizing (1)Σ(g)(-) state has been excited via the intermediate c(4) (v = 0) (1)Π(u) Rydberg state. We present the analysis of the band located at T(v) = 10,800.7 ± 2 cm(-1) with respect to the intermediate state, 126,366 ± 11 cm(-1) with respect to the ground state, approximately 700 cm(-1) above the first ionization threshold. From the analysis a rotational constant of B(v) = 1.700 ± 0.005 cm(-1) has been determined for this band. Making use of the pulsed structure of the two radiation beams, lifetimes of several rotational levels of the intermediate state have been measured. We also report rotationally-averaged fluorescence lifetimes (300 K) of several excited electronic states accessible from the ground state by absorption of one photon in the range of 13.85-14.9 eV. The averaged lifetimes of the c(4) (0) and c(5) (0) states are 5.6 and 4.4 ns, respectively, while the b(') (12), c(')(4) (4, 5, 6), and c(')(5) (0) states all have lifetimes in the range of hundreds of picoseconds.  相似文献   

8.
Infrared (IR) absorption spectra of matrix-isolated HCCCH(2) have been measured. Propargyl radicals were generated in a supersonic pyrolysis nozzle, using a method similar to that described in a previous study (Jochnowitz, E. B.; Zhang, X.; Nimlos, M. R.; Varner, M. E.; Stanton, J. F.; Ellison, G. B. J. Phys. Chem. A 2005, 109, 3812-3821). Besides the nine vibrational modes observed in the previous study, this investigation detected the HCCCH(2) X? (2)B(1) out-of-plane bending mode (ν(8)) at 378.0 (±1.9) cm(-1) in a cryogenic argon matrix. This is the first experimental observation of ν(8) for the propargyl radical. In addition, seven overtone and combination bands have also been detected and assigned. Ab initio coupled-cluster anharmonic force field calculations were used to guide the analysis. Furthermore, ν(12), the HCCCH(2) in-plane bending mode, has been assigned to 333 (±10) cm(-1) based on the detection of its overtone (2ν(12), 667.7 ± 1.0 cm(-1)) and a possible combination band (ν(10) + ν(12), 1339.0 ± 0.8 cm(-1)). This is the first experimental estimation of ν(12) for the propargyl radical.  相似文献   

9.
CH(3)OO radicals were produced upon irradiation of a flowing mixture of CH(3)I and O(2) with a KrF excimer laser at 248 nm. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved IR absorption spectra of reaction intermediates. Transient absorption bands with origins at 3033, 2954, 1453, 1408, 1183, 1117, 3020, and 1441 cm(-1) are assigned to nu(1)-nu(6), nu(9), and nu(10) modes of CH(3)OO, respectively, close to wavenumbers reported for CH(3)OO isolated in solid Ar. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ) predicted the geometry and the vibrational wavenumbers of CH(3)OO; the vibrational wavenumbers and relative IR intensities of CH(3)OO agree satisfactorily with these observed features. The rotational contours of IR spectra of CH(3)OO, simulated based on ratios of predicted rotational parameters for the upper and lower states and on experimental rotational parameters of the ground state, agree satisfactorily with experimental results; the mixing ratios of a-, b-, and c-types of rotational structures were evaluated based on the direction of dipole derivatives predicted quantum chemically. A feature at 995 cm(-1), ascribed to CH(3)OOI from a secondary reaction of CH(3)OO with I, was also observed.  相似文献   

10.
We present rotationally resolved spectra of the S(1)<--S(0) transition of anthracene at 27,687.153(4) cm(-1) as well as Stark effect measurements of the free anthracene molecule in electric fields of up to 85 kV/cm. The molecule is rotationally cooled in a supersonic jet expansion to a temperature of 4 K. The rotational constants of the electronic states S(0) and S(1) are determined by a simplex fit comparing the experimental spectra with simulations for an asymmetric rigid rotor. The measured and simulated energies are in very good agreement and the estimated accuracy of the rotational constants is 1 per thousand. Furthermore, the polarizabilities of the electronic states S(0) and S(1) are investigated. At an electric field of 85 kV/cm, line shifts of up to 150 MHz caused by a change in the polarizability of Deltaalpha=123(7) a.u. and broadenings due to the anisotropy are observed. The components of the tensor polarizabilities of the electronic states S(0) and S(1) are determined by simulating the complete spectra using second-order perturbation theory.  相似文献   

11.
A combined microwave, infrared, and computational investigation of CHBrF(2) is reported. For the vibrational ground state, measurements in the millimeter- and sub-millimeter-wave regions for CH(79)BrF(2) and CH(81)BrF(2) provided rotational and centrifugal-distortion constants up to the sextic terms as well as the hyperfine parameters (quadrupole-coupling and spin-rotation interaction constants) of the bromine nucleus. The determination of the latter was made possible by recording of spectra at sub-Doppler resolution, achieved by means of the Lamb-dip technique, and supporting the spectra analysis by high-level quantum chemical calculations at the coupled-cluster level. In this context, the importance of relativistic effects, which are of the order of 6.5% and included in the present work using second-order direct perturbation theory, needs to be emphasized for accurate predictions of the bromine quadrupole-coupling constants. The infrared measurements focused on the ν(4) fundamental band of CH(79)BrF(2). Fourier transform investigations using a synchrotron radiation source provided the necessary resolution for the observation and analysis of the rotational structure. The spectroscopic parameters of the v(4) = 1 state were found to be close to those of the vibrational ground state, indicating that the ν(4) band is essentially unaffected by perturbations.  相似文献   

12.
High resolution FTIR spectra have been recorded in the region 250-770 cm(-1) using synchrotron radiation and over 2000 transitions to the ν(8) and ν(12) states of the short lived species ketenimine have been assigned. Ground state combination differences combined with published microwave transitions were used to refine the constants for the ground vibrational state. Rotational and centrifugal distortion parameters for the v(8) = 1 and v(12) = 1 levels were determined by co-fitting transitions, and treating a strong a-axis Coriolis interaction. Selection rules for the observed ν(12) transitions indicate that they arise solely from "perturbation allowed" intensity resulting from this Coriolis interaction.  相似文献   

13.
The infrared (IR)-vacuum ultraviolet (VUV)-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) spectrum for C2H4(X1A(g), v11 = 1, N'(Ka'Kc') = 3(03)) in the VUV range of 83,000-84,800 cm(-1) obtained using a single mode infrared laser revealed 24 rotationally resolved vibrational bands for the ion C2H4(+)(X2B(3u)) ground state. The frequencies and symmetry of the vibrational bands thus determined, together with the anharmonic frequency predictions calculated at the CCSD(T)/aug-cc-pVQZ level, have allowed the unambiguous assignment of these vibrational bands. These bands are mostly combination bands. The measured frequencies of these bands yield the fundamental frequencies for v8+ = 1103 +/- 10 cm(-1) and v10+ = 813 +/- 10 cm(-1) of C2H4(+)(X2B(3u)), which have not been determined previously. The present IR-VUV-PFI-PE study also provides truly rovibrationally selected and resolved state-to-state cross sections for the photoionization transitions C2H4(X1A(g); v11, N'(Ka'Kc')) --> C2H4(+)(X2B(3u); vi+, N+(Ka+Kc+)), where N'(Ka'Kc') denotes the rotational level of C2H4(X1A(g); v11), and vi+ and N+(Ka+Kc+) represent the vibrational and rotational states of the cation.  相似文献   

14.
The pure rotational spectrum of phenanthridine (C(13)H(9)N), a small polycyclic aromatic nitrogen heterocycle (PANH), has been measured from 48 to 85 GHz employing Stark modulated millimetre wave absorption spectroscopy of a supersonic rotationally cold molecular beam. Initial survey search scans were guided by rotational constants obtained through quantum chemical calculations performed at the B3LYP/cc-pVTZ level of theory. Close agreement--to well within 1%--is found between the calculated equilibrium and experimentally derived ground state rotational constants. From the moments of inertia a substantial negative inertial defect of Delta = -0.4688(44) amu Angstroms(2) is obtained which can be explained by the presence of several energetically low-lying out-of-plane vibrational modes. Corresponding density functional theory calculations of harmonic fundamental frequencies indeed yield four such low frequency modes with values as low as 96 cm(-1). The data presented here will also be useful for deep radio astronomical searches for PANHs employing large radio telescopes.  相似文献   

15.
By preparing methyl bromide (CH3Br) in selected rotational levels of the CH3Br(X(1)A1; v1 = 1) state with infrared (IR) laser excitation prior to vacuum-ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) measurements, we have observed rotationally resolved photoionization transitions to the CH3Br(+)(X(2)E(3/2); v1(+) = 1) state, where v1 and v1(+) are the symmetric C-H stretching vibrational mode for the neutral and cation, respectively. The VUV-PFI-PE origin band for CH3Br(+)(X(2)E(3/2)) has also been measured. The simulation of these IR-VUV-PFI-PE and VUV-PFI-PE spectra have allowed the determination of the v1(+) vibrational frequency (2901.8 +/- 0.5 cm(-1)) and the ionization energies of the origin band (85 028.3 +/- 0.5 cm(-1)) and the v1(+) = 1 <-- v1 = 1 band (84 957.9 +/- 0.5 cm(-1)).  相似文献   

16.
We here present experimental infrared spectra on two (C(6)H(6))(C(6)D(6)) benzene dimer isomers in the gas phase. The spectra show that the two benzene molecules in the dimer are symmetrically inequivalent and have distinct IR signatures. One of the two molecules is in a site of low symmetry, which leads to the IR activation of fundamental modes that are IR forbidden by symmetry in the monomer. In the spectra, all four fundamental C-H stretch modes of benzene are observed. Modes in the dimer are shifted up to 3 cm(-1) to the red, compared to the modes that are known for the monomer. For the nu(13) B(1u) C-H stretch fundamental mode of benzene, a first experimental value of 3015(+2) (-5) cm(-1) is determined, in excellent agreement with anharmonic frequency calculations presented here.  相似文献   

17.
Raman spectra of 2 (3H) benzofuranone have been recorded in the region 400-3200 cm(-1) and the IR spectra have been recorded in the region 200-4000 cm(-1). Vibrational frequencies for the fundamental modes of this bicyclic heteroatomic molecule have also been calculated using Austin method 1 (AM1) semiempirical molecular orbital method. Vibrational assignments have been made for the fundamental modes and the observed combination and overtone bands are also assigned. A splitting in the carbonyl group (C=O stretching) frequency observed at 1640-1660 cm(-1) in both Raman and IR spectra, is explained as Fermi-resonance. Net atomic charges for each atom of this molecule along with its heat of formation were also calculated. It is evident from the calculations that the 2 (3H) benzofuranone is more stable than the 3 (2H) benzofuranone in contrast to earlier estimates.  相似文献   

18.
We report the infrared spectra of HCl, (HCl)2, and H2O-HCl in liquid helium nanodroplets in the frequency region between 2680 and 2915 cm(-1). For the HCl monomer a line width of 1.0 cm(-1) (H35Cl) corresponding to a lifetime of 5.3 ps was observed. The line broadening indicates fast rotational relaxation similar to that previously observed for HF. For (HCl)2 the free HCl as well as the bound HCl stretching band has been observed. The nu2+ bands of (HCl)2 could be rotationally resolved, and rotational constants were deduced from the spectra. We observed both the allowed and the symmetry forbidden transition. However, the forbidden "broken symmetry" tunneling transition of the mixed dimer shows an intensity that is considerably enhanced compared to the gas phase. Upon the basis of the present measurements we were able to calculate the tunneling splitting in the excited state. The tunneling splitting is found to be reduced by 28% compared to the gas phase. Transitions from the ground state to the Ka=1 level of the free HCl stretch (nu1) are recorded and show considerable line broadening with a line width of 2 cm(-1). The excited state Ka=1 has an additional rotational energy of about 10 cm(-1), thereby allowing fast rotational relaxation by coupling to helium excitations. In addition we observed the HCl stretch of the HCl-H2O dimer, which exhibits an unusually large width (1.7 cm(-1) for H35Cl)) and large red shift (8.5 cm(-1)), compared to the gas-phase values. The large-amplitude motion originating from the libration mode of the HCl-H2O complex is supposed to act as a fast relaxation manifold.  相似文献   

19.
The trifluoromethyl radical, CF(3)(●), is studied for the first time by means of threshold photoelectron spectroscopy (TPES). The radical is produced in the gas phase using the flash-pyrolysis technique from hexafluoroethane as a precursor. CF(3)(+) total ion yield and mass-selected TPES of the radical are recorded using a spectrometer based upon velocity map imaging and Wiley-McLaren time-of-flight coupled to the synchrotron radiation. The high resolution of the instrument and of the photons allows the observation of rich vibrational progressions in the TPES of CF(3)(●). By using Franck-Condon factors computed by Bowman and coworkers, we have been able to simulate the TPES. The initial vibrational temperature of the radical beam has been evaluated at 350 ± 70 K. The structures have been identified as transitions between (n(1),n(2)) and (n(1)(+),n(2)(+)) vibrational levels of CF(3) and CF(3)(+) with small excitation of the breathing mode, ν(1)(+) (,) and large excitation (n(2)(+) = 10-26) of the umbrella mode, ν(2)(+), in the cation. From the energy separation between the two resolved peaks of each band, a value of 994 ± 16 cm(-1) has been derived for the ν(1)(+) breathing frequency of CF(3)(+). For the high-lying n(2)(+) levels, the apparent ν(2)(+) umbrella spacing, 820 ± 14 cm(-1), is fairly constant. Taking into account the ν(2)(+) anharmonicity calculated by Bowman and coworkers, we have deduced ν(2)(+) = 809 ± 14 cm(-1), and semi-empirical estimations of the adiabatic ionization energy IE(ad.)(CF(3)(●)) are proposed in good agreement with most of previous works. A value of the vertical ionization potential, IE(vert.)(CF(3)(●)) = 11.02 eV, has been derived from the observation of a photoelectron spectrum recorded at a fixed photon energy of 12 eV.  相似文献   

20.
In the search for a full mechanism creating CO(2) from OH + CO, it has been suggested that creation of the hydroxyformyl or HOCO radical may be a necessary step. This reaction and its transient intermediate may also be responsible for the regeneration of CO(2) in such high quantities in the atmosphere of Mars. Past spectroscopic observations of this radical have been limited and a full gas phase set of the fundamental vibrational frequencies of the HOCO radical has not been reported. Using established, highly accurate quantum chemical coupled cluster techniques and quartic force fields, we are able to compute all six fundamental vibrational frequencies and other spectroscopic constants for trans-HOCO in the gas phase. These methods have yielded rotational constants that are within 0.01 cm(-1) for A(0) and 10(-4) cm(-1) for B(0) and C(0) compared with experiment as well as fundamental vibrational frequencies within 4 cm(-1) of the known gas phase experimental ν(1) and ν(2) modes. Such results lead us to conclude that our prediction of the other four fundamental modes of trans-HOCO are also quite reliable for comparison to future experimental observation, though the discrepancy for the torsional mode may be larger since it is fairly anharmonic. With the upcoming European Space Agency/NASA ExoMars Trace Gas Orbiter, these data may help to establish whether HOCO is present in the Martian sky and what role it may play in the retention of a CO(2)-rich atmosphere. Furthermore, these data may also help to clear up questions built around the fundamental chemical process of how exactly the OH + CO reaction progresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号