首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene oxide (GO) was functionalized using three different diamines, namely ethylenediamine (EDA), 4,4′-diaminodiphenyl sulfone (DDS) and p-phenylenediamine (PPD) to reinforce an epoxy adhesive, with the aim of improving the bonding strength of carbon fiber/epoxy composite. The chemical structure of the functionalized GO (FGO) nanosheets was characterized by elemental analysis, FT-IR and XRD. Hand lay-up, as a simple method, was applied for 3-ply composite fabrication. In the sample preparation, the fiber-to-resin ratio of 40:60 (w:w) and fiber orientations of 0°, 90°, and 0° were used. The GO and FGO nanoparticles were first dispersed in the epoxy resin, and then the GO and FGO reinforced epoxy (GO- or FGO-epoxy) were directly introduced into the carbon fiber layers to improve the mechanical properties. The GO and FGO contents varied in the range of 0.1–0.5 wt%. Results showed that the mechanical properties, in terms of tensile and flexural properties, were mainly dependent on the type of GO functionalization followed by the percentage of modified GO. As a result, both the tensile and flexural strengths are effectively enhanced by the FGOs addition. The tensile and flexural moduli are also increased by the FGO filling in the epoxy resin due to the excellent elastic modulus of FGO. The optimal FGO content for effectively improving the overall composite mechanical performance was found to be 0.3 wt%. Scanning electron microscopy (SEM) revealed that the failure mechanism of carbon fibers pulled out from the epoxy matrix contributed to the enhancement of the mechanical performance of the epoxy. These results show that diamine FGOs can strengthen the interfacial bonding between the carbon fibers and the epoxy adhesive.  相似文献   

2.
Graphene oxide (GO) was treated with two types of surfactants, i.e., silane coupling agent (KH550) and 4,4’-diphenylmethane diisocyanate (MDI), incorporated into phenyl silicone rubber at a low concentration (≤0.2 wt%), and cured by the room temperature vulcanized method. The effects of functional graphene oxide on the dielectric behaviour, thermal conductivity, optical transmittance and mechanical properties of the composites were investigated. The results showed that the particle size changed after modification and that the modified GO dispersed well in the phenyl silicone rubber. The composites with MDI modified GO exhibited better electrical insulation and lower light loss in the ultraviolet–visible region than the composites with KH550 modified GO. However, composites filled with KH550 modified GO present better thermal conductivity.  相似文献   

3.
Modification of natural rubber (NR) via grafting polymerization with maleic anhydride (MA) has received wide attention as it could improve the hydrophilicity of NR and extend its application to a wider application field. However, the grafting efficiency of MA onto NR in either the molten state or solution state is low and is accompanied with undesired high gel content in the grafts. In this work a novel technical route was developed in that a deproteinization operation was conducted before carrying out the grafting process and a differential microemulsion polymerization technique was applied for the grafting reaction. The effects of initiator and monomer concentration, reaction temperature, and reaction time on the grafting efficiency and gel fraction were investigated, and a comparison of the reaction performance was conducted for deproteinized NR (DPNR) and NR. The results indicated that the deproteinization operation could significantly improve the grafting efficiency and reduce the gel content, and a 29% yield of MA grafted onto the rubber backbone could be achieved at a condition of a DPNR:MA:initiator ratio of 85:9:6 (wt%) at 60 °C for 8 h.  相似文献   

4.
The solution behaviors of the chlorinated polypropylene (CPP) and its grafted polymers (CPP-g-MAH) were systematically studied to characterize their polar change with grafting maleic anhydride (MAH) onto the chain of CPP. The molecular weights of the polymers were determined with light scattering measurements, and the Mark–Houwink equation of CPP in toluene was also obtained. The result showed that the Mark–Houwink equation of CPP was suitable for estimating the molecular weight of the polydisperse samples of CPP and not suitable to CPP-g-MAH because the molecular polarity of the graft polymers had changed with grafting MAH onto CPP. The solubility result of CPP and CPP-g-MAH in various solvents indicated that the polarity of CPP gradually increased with grafting MAH onto its chain, which would cause the solubility of poorly hydrogen bonded solvents for CPP-g-MAH to gradually become poor, whereas that of moderately hydrogen bonded solvents for the polymers becomes better with an increase of the MAH graft content. This is consistent with the results of their dilution ratio and solubility parameter. Stabilities of the 344# resin–CPP-g-MAH–toluene solutions showed that the miscibility of CPP-g-MAH and 344# resin was improved with increase of the MAH grafted content.  相似文献   

5.
Ionic liquid 1‐allyl‐3‐methyl‐imidazolium chloride (AMICl) is used to fine‐tune the surface properties of graphene oxide (GO) sheets for fabricating ionic liquid functionalized GO (GO‐IL)/styrene‐butadiene rubber (SBR) nanocomposites. The morphology and structure of GO‐IL are characterized using atomic force microscope, X‐ray diffraction, differential scanning calorimetry, X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV‐vis spectra and Raman spectra. The interaction between GO and AMICl molecules as well as the effects of GO‐IL on the mechanical properties, thermal conductivity and solvent resistance of SBR are thoroughly studied. It is found that AMICl molecules can interact with GO via the combination of hydrogen bond and cation–π interaction. GO‐IL can be well‐dispersed in the SBR matrix, as confirmed by X‐ray diffraction and scanning electron microscope. Therefore, the SBR nanocomposites incorporating GO‐IL exhibit greatly enhanced performance. The tensile strength, tear strength, thermal conductivity and solvent resistance of GO‐IL/SBR nanocomposite with 5 parts per hundred rubber GO‐IL are increased by 505, 362, 34 and 31%, respectively, compared with neat SBR. This method provides a new insight into the fabrication of multifunctional GO‐based rubber composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Poly(benzoxazine-urethane)/graphene oxide [poly(Bz-PU)/GO] composites were successfully prepared by blending benzoxazine (Bz) with graphene oxide (GO) and isocyanato (NCO)-terminated polyurethane prepolymer (PU), followed by thermally activated polymerization of the blends. The network was formed via the mutual reaction and intermolecular interaction among the hydroxyl of GO, NCO groups of PU and phenolic hydroxyl of Bz. The toughness shown from SEM images and tensile properties of polybenzoxazine (PBz) plastic composites can effectively be improved by alloying with PU and GO. The onset curing temperature and exothermic peak maximums of the polymerization obtained from differential scanning calorimetry decreased resulted from the GO addition. The thermogravimetric analysis showed that the incorporation of 0.5 wt% of GO slightly improved the thermal stability of poly(Bz-PU)/GO composites. Additionally, the storage modulus improved and the glass transition temperature (Tg) increased gradually as the increasing GO content not beyond a certain amount. Finally, the exothermic peaks of the polymerization were shifted to lower temperature, and the thermal stability increased for the ternary composites as the number average molecular weights (Mn) of polyol decreased.  相似文献   

7.
An effective strategy for the polyolefin-functionalized graphene oxide (fGO) using two-step methods has been reported for GO/HDPE nanocomposite with excellent mechanical properties.  相似文献   

8.
The novel polymer composite of polyvinyl alcohol (PVA), polyol(PO) and graphene oxide (GO) was used to prepare the PVA/PO and GO/PVA/PO with different weight percents of GO (0.5 and 1% denoted as (0.5 wt%)GO/PVA/PO and (1 wt%)GO/PVA/PO, respectively) through solution casting blend technique. The structure–properties of all used films were confirmed by scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and mechanical properties. The SEM results exhibited the uniform and homogeneous dispersion of GO in the PVA/PO blend matrix. The TEM and XRD analysis confirmed the structure and exfoliation of GO nanosheets, respectively. Thermal stability suggested that (0.5 wt%)GO/PVA/PO and (1 wt%) GO/PVA/PO films are more stable than PVA/PO. The tensile strength of (0.5 wt%)GO/PVA/PO and (1 wt%)GO/PVA/PO films reached 270.5% and 1349.6%, respectively, which are higher than that of the PVA/PO film. The decrease in the water absorption (WA) of GO/PVA/PO was found from 110.5 to 38.4%. The physico-mechanical properties of used films suggested that the prepared GO/PVA/PO blend composite films can be applied in food packaging areas.  相似文献   

9.
About phase: Ferromagnetic γ-Fe(2) O(3) nanowires (left in the figure) with a saturation magnetization (M(s) ) of 54.0?emu?g(-1) and coercivity of 518?Oe at room temperature, and superparamagnetic hollow α-Fe(2) O(3) nanoparticles (right) with a room-temperature M(s) of 2.9?emu?g(-1) were synthesized by the thermal decomposition of [Fe(CO)(5) ] but with the stabilizing action of maleic anhydride grafted polypropylene.  相似文献   

10.
Epoxy resin networks modified with different functionalized liquid polybutadiene were characterized by scanning electron microscopy, atomic force microscopy (AFM), and dielectric thermal analysis techniques. Different morphologies were observed for these different systems, which were attributed to different interaction degrees between the components. Hydroxyl‐terminated polybutadiene (HTPB) and carboxyl‐ terminated polybutadiene (CTPB) resulted in epoxy networks with two‐phase morphology that differed in rubber particle size. The use of isocyanate‐terminated polybutadiene (NCOTPB) resulted in transparent thermoset material, whose rubber domains were in the nanoscale dimension, only detected by the AFM technique. The different morphological aspects in these epoxy systems also affected the dielectric properties. The epoxy–HTPB network exhibited two low temperature relaxation peaks corresponding to two different phases present in the system, whereas the epoxy–CTPB or epoxy–NCOTPB systems, whose rubber particles are well adhered to the epoxy matrix by chemical bonds, displayed only one single low temperature relaxation peak. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4053–4062, 2004  相似文献   

11.
Poly-(butylene adipate-co-terephthalate) (PBAT) has captured significant interest by dint of its biodegradability, superb ductility, promising processing properties and good final properties, but the insufficient barrier performance limits its application, especially in packaging field. In the present work, improved barrier properties of PBAT films were obtained by introducing an extremely low amount of graphene oxide nanosheets (GONS). O2 and water vapor permeability coefficients were decreased by more than 70% and 36% at the GONS loading of 0.35 vol%, respectively. The enhanced barrier performance was ascribed to the outstanding impermeability and well dispersion of GONS as well as the strong interfacial adhesion between GONS and PBAT matrix. Furthermore, tensile strength and Young's modulus of GONS/PBAT nanocomposite rise up to 27.8 MPa and 72.2 MPa from 24.6 MPa to 58.5 MPa of neat PBAT, respectively, showing a prominent increase of mechanical properties compared to neat PBAT. The incorporation of GONS also endowed PBAT matrix with an excellent thermal stability. These findings provide a significant guidance for fabricating high barrier films on a large scale.  相似文献   

12.
Mixed fillers composed of functionalized graphene (f-G) and functionalized multi-walled carbon nanotubes (f-CNTs) (f-G-f-CNTs) were prepared and their synergistic effects in terms of enhancing the electrical conductivity and tensile modulus of poly(ether sulfone) (PES) composites were investigated. The results indicate that the electrical conductivity of the 5 wt% f-G-f-CNTs(Wf-G/Wf-CNTs = 1:1)/PES composite was 2.2 times higher than that of the 5 wt% f-G/PES composite and 8.9 times higher than that of the 5 wt% f-CNTs/PES composite. Moreover, the tensile modulus of the 5 wt% f-G-f-CNTs(Wf-G/Wf-CNTs = 1:1)/PES composite relative to that of the 5 wt% f-G/PES composite and 5 wt% f-CNTs/PES composite increased by 16.5% and 50.6%, respectively. Additionally, enhancements in the electrical conductivity and tensile modulus of the PES composite depended on the weight ratio of f-G and f-CNTs in the mixed fillers. The electrical conductivity and tensile modulus exhibited maximum values when the weight ratios of f-G and f-CNTs were 1:3 and 1:1, respectively. When the weight ratio of f-G and f-CNTs was fixed at 1:1, the f-G-f-CNTs(Wf-G/Wf-CNTs = 1:1)/PES composite showed a percolation threshold of 0.22 vol%, much lower than that of the f-G/PES composite.  相似文献   

13.
Maleic Anhydride (MAH) was grafted onto poly(L-lactic acid) (PLLA) in the presence of dicumyl peroxide (DCP) as a radical initiator. The effect of the MAH and DCP concentrations on the grafting and the physical and mechanical properties of PLLA films were investigated. The glass transition temperature and crystallinity significantly decreased with addition of MAH. The thermal decomposition of the PLLA films was affected by the MAH content while the mechanical properties were almost unchanged. A slight increase in molecular weight was found, which could be attributed to either the MAH branching reaction or a possible crosslinking reaction between the PLLA chains increasing the chain entanglements.  相似文献   

14.
The creep recovery properties of different graphene-doped rubber and the effect of temperature on them were studied. Doping graphene, especially with the surface functional group or surface microstructure, can significantly improve the creep resistance of natural rubber (NR). The permanent creep of each composite tested under the same conditions for 20 min. Graphene oxide, hydrazine hydrate reduced graphene oxide, and 3-aminopropyltriethoxysilane (APTS) grafted graphene oxide was 33%, 16%, and 51% lower than those filled with carbon black respectively. Four parameter model and Weibull distribution function used to analyze and evaluate the creep and recovery test results of composite rubber. These curve fitting results can adequately describe the influence of different types of nanofillers on the creep and recovery properties of composite rubber. The long-term creep of composites forecasted by the time-temperature superposition principle (TTSP). The results show that graphene doping can improve the creep resistance of the rubber. Besides, graphene oxide and surface-modified graphene oxide had better creep resistance than reduced graphene oxide filled natural rubber. It can see that the interfacial properties between the graphene sheet and the natural rubber matrix play an essential role in the creep and recovery properties of graphene/natural rubber composites.  相似文献   

15.
李晓锋  于中振 《高分子科学》2017,35(11):1381-1390
To enhance the mechanical properties of three-dimensional graphene aerogels with aramid fibers,graphene/organic fiber aerogels are prepared by chemical reduction of graphene oxide in the presence of organic fibers of poly(p-phenylene terephthalamide)(PPTA) and followed by freeze-drying. Thermal annealing of the composite aerogels at 1300 ° C is adopted not only to restore the conductivity of the reduced graphene oxide component but also to convert the insulating PPTA organic fibers to conductive carbon fibers by the carbonization. The resultant graphene/carbon fiber aerogels(GCFAs) exhibit high electrical conductivities and enhanced compressive properties, which are highly efficient in improving both mechanical and electrical performances of epoxy composites. Compared to those of neat epoxy, the compressive modulus, compressive strength and energy absorption of the electrically conductive GCFA/epoxy composite are significantly increased by 60%, 59% and 131%, respectively.  相似文献   

16.
Fiber Metal Laminates (FMLs) is developing very fast with the both features of resin-based composite and metal and its property can be improved by mixing nano-scale particles as FMLs-Nano. Based on the different mixing volume fractions, this paper investigated the effect of Graphene Oxide (GO) on the mechanical properties of the FMLs with carbon fiber used, including tensile, flexural and interface shear behaviors. The interface strengthening mechanism of GO as significant filler for enhancing the carbon woven fabric based FMLs' was explored. To encourage the application range of FMLs-Nano in the fields of aircraft, aerospace and automotive etc. to form the complicated components. It was observed that the FMLs with GO (FMLs-GO) has the better tensile performance than the FMLs without GO and the Young's modulus and tensile strength of the FMLs-GO are increased by 13.5% and 11.7%, respectively. Especially, the flexural and interface shear strength can be increased up to 134.0% and 150.4% compared to the pure FMLs and the improvement mechanism was investigated mechanically and observed with scanned micrograph. This paper also provides a fundamental reference for improving the interfacial performance of different layers of FMLs-GO by using the normal preparation condition.  相似文献   

17.
A hybrid material of graphene oxide (GO) sheets beaded with ZnO nanoparticles was prepared. The material extends over a few hundred square nanometers, in which the ZnO nanoparticles (average diameter (∼5 nm)) are dispersed evenly on the GO sheet. Both the surface photovoltage or surface photocurrent intensity for the material are much stronger than for pure ZnO nanoparticles, meaning that the free charge carriers can effectively be transferred from ZnO nanoparticles to GO sheets, which can serve as a probe to monitor the electron transfer from excited ZnO to GO. Anchoring ZnO nanoparticles on two dimensional carbon nanostructures such as GO can pave a way towards the design of ordered nanostructure assemblies that can harvest light energy efficiently.  相似文献   

18.
We report the preparation and enhanced thermal and mechanical properties of poly (vinylidine diflouride) (PVDF) nanocomposites reinforced by few-layer graphene flakes which are produced by the direct liquid-phase exfoliation of pristine graphite. Graphene flakes are found to homogeneously disperse in PVDF, reduce the bubble defects and thus the porosity of PVDF, and change PVDF’s crystallinity. Thermogravimetric analysis indicates that graphene can accelerate the fracture of hydrogen bond connecting PVDF and N-Methyl pyrrolidone molecules. 1.5?wt% graphene loading leads to around 20?°C enhancement in the melting temperature of PVDF. The mechanical properties like Young’s modulus (EIT), yield stress (σy), and hardness (H) of the nanocomposites are investigated by nanoindentation technique. A 1.0?wt% loading of graphene is found to increase EIT, σy, and H of PVDF by ~337%, ~102%, and ~228%, respectively.

  • Highlights
  • Few-layer graphene was produced by liquid-phase exfoliation.

  • Graphene were added to PVDF to enhance thermal and mechanical properties of polymer.

  • Mechanical properties of PVDF/graphene composite films were investigated by nanoindentation.

  相似文献   

19.
宋义虎  郑强 《高分子科学》2013,31(3):399-406
Colloidal suspensions of glutaraldehyde (GA) crosslinked or grafted graphene oxide (GO) sheets were fabricated by simply tailoring the feed sequence. The different structures were confirmed by Fourier transform infrared spectra and X-ray diffraction. As demonstration of the utilities, the different colloidal suspensions were used to prepare free-standing papers by flow-directed filtration and poly(vinyl alcohol) (PVA)-based nanocomposite films by casting. Free-standing papers from GA crosslinked GO sheets exhibited better mechanical properties than unmodified GO paper, while nanocomposite films from GA grafted GO exhibit higher tensile strength and Young’s modulus.  相似文献   

20.
In this paper, GO-BN(graphene oxide grafted boron nitride) was synthesized from graphene oxide and boron nitride by silane coupling agent KH550. Furthermore, GO-BN and intumescent flame retardant (IFR) were added into natural rubber (NR) simultaneously to improve its flame retardancy. The structure of GO-BN was studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The analysis showed that GO-BN was successfully synthesized. The enhanced flame retardancy performance of flame retardant natural rubber (FRNR) was evaluated by limiting oxygen index (LOI) and UL-94 tests. Moreover, the combustion action of FRNR in fire was evaluated by cone calorimetry. Notably, the results showed that the sample with a GO-BN content of 12 phr showed the best flame retardancy performance. The heat release rate (HRR) and total heat release rate (THR) were remarkably decreased by 42.8% and 19.4%, respectively. Carbon residues were analyzed by infrared spectroscopy and scanning electron microscopy, which showed that GO-BN and IFR had a synergistic catalytic effect. The formation of compact thermal stable carbon layer after combustion was the key to protect engineering materials from combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号