首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to characterize a solid surface, the commonly used approach is to measure the advancing and receding contact angles, i.e., the contact angle hysteresis. However, often an estimate of the average wettability of the solid–liquid system is required, which involves both the dry and wetted states of the surface. In this work, we measured advancing and receding contact angles on six polymer surfaces (polystyrene, poly(ethylene terephthalate), poly(methyl methacrylate), polycarbonate, unplasticized poly(vinyl chloride), and poly(tetrafluoroethylene)) with water, ethylene glycol and formamide using the sessile drop and captive bubble methods. We observed a general disagreement between these two methods in the advancing and receding contact angles values and the average contact angle determined separately by each method, although the contact angle hysteresis range mostly agreed. Surface mobility, swelling or liquid penetration might explain this behaviour. However, we found that the 'cross' averages of the advancing and receding angles coincided. This finding suggests that the cross-averaged angle might be a meaningful contact angle for polymer–liquid systems. Hence, we recommend using both the sessile drop and captive bubble methods.  相似文献   

2.
In this paper, a method to measure the advancing and receding contact angles on individual colloidal spheres is described. For this purpose, the microspheres were attached to atomic force microscope cantilevers. Then the distance to which the microsphere jumps into its equilibrium position at the air-liquid interface of a drop or an air bubble was measured. From these distances the contact angles were calculated. To test the method, experiments were done with silanized silica spheres (4.1 μm in diameter). From the experiments with drops, an advancing contact angle of 101 ± 4° was determined. A receding contact angle of 101 ± 2° was calculated from the jump-in distance into a bubble. Both experimental techniques gave the same contact angle. In contrast, on similarly prepared planar silica surfaces, a clear hysteresis was measured with the sessile drop method; contact angles of 104.5 ± 1° and 93.8 ± 1° were determined for the advancing and receding contact angles, respectively.  相似文献   

3.
Advancing and receding contact angle measurements on polymer surfaces can be performed using a number of different methods. Ballistic deposition is a new method for both rapidly and accurately measuring the receding contact angle of water. In the ballistic deposition method, a pulsed stream of 0.15-μL water droplets is impinged upon a surface. The water spreads across the surface and then coalesces into a single 1.8-μL drop. High-speed video imaging shows that, on most surfaces, the water retracts from previously wetted material, thereby forming receding contact angles that agree with the receding angles measured by the Wilhelmy plate technique. The ballistic deposition method measures the receding angle within one second after the water first contacts the surface. This rapid measurement enables the investigation of polymer surface properties that are not easily probed by other wettability measurement methods. For example, meaningful contact angles of water can be obtained on the water-soluble low-molecular-weight oxidized materials (LMWOM) formed by the corona and flame treatment of polypropylene (PP) films. Use of the ballistic deposition method allows for a characterization of the wetting properties and an estimation of the surface energy components of LMWOM itself. Both corona- and flame-generated LMWOM have significant contact angle hysteresis, almost all of which is accounted for by the non-dispersive (polar) component of the surface rather than by the dispersive component. Surface heterogeneity is thus associated primarily with the oxidized functionalities added to the PP by the corona and flame treatments.  相似文献   

4.
The poly(ethylene terephthalate), PET, film was exposed to atmospheric pressure plasma under various plasma processing parameters. The wettability of the PET film immediately after the exposure and after storage in air, which was determined by the sessile drop method, was strongly dependent on the plasma processing parameters. The contact angle hysteresis on the plasma-exposed PET film was examined by the Wilhelmy method. It was found that the hydrophobic recovery of the PET surface on storage after the plasma exposure was observed only for the advancing contact angle and that the receding angle remained almost the same. These experimental findings were explained on the basis of the calculation by Johnson and Dettre for the advancing and receding contact angles on model heterogeneous surfaces.  相似文献   

5.
Surface topography and surface chemistry heterogeneity are widely accepted as causes of contact angle hysteresis. Contact angle hysteresis occurs on essentially all industrial polymer films. Four unmodified and flame-treated biaxially oriented poly(propylene) (BOPP) films produced from the same poly(propylene) base resin, but differing in surface topography and orientation, were characterized by measurement of the advancing and receding contact angles of water and diiodomethane, by atomic force microscopy (AFM) and by x-ray photoelectron spectroscopy (XPS). Contact angle hysteresis was much larger on flame-treated samples than on untreated samples even though some of the untreated films have significantly different topography at the nanoscale.  相似文献   

6.
Hydrophobic solid surfaces with controlled roughness were prepared by coating glass slides with an amorphous fluoropolymer (Teflon® AF1600, DuPont) containing varying amounts of silica spheres (diameter 48?μm). Quasi-static advancing, θA, and receding, θR, contact angles were measured with the Wilhelmy technique. The contact angle hysteresis was significant but could be eliminated by subjecting the system to acoustic vibrations. Surface roughness affects all contact angles, but only the vibrated ones, θV, agree with the Wenzel equation. The contact angle obtained by averaging the cosines of θA and θR is a good approximation for θV, provided that roughness is not too large or the angles too small. Zisman's approach was employed to obtain the critical surface tension of wetting (CST) of the solid surfaces. The CST increases with roughness in accordance with Wenzel equation. Advancing, receding, and vibrated angles yield different results. The θA is known to be characteristic of the main hydrophobic component (the fluoropolymer). The θV is a better representation of the average wettability of the surface (including the presence of defects).  相似文献   

7.
Hydrophobic solid surfaces with controlled roughness were prepared by coating glass slides with an amorphous fluoropolymer (Teflon® AF1600, DuPont) containing varying amounts of silica spheres (diameter 48 μm). Quasi-static advancing, θA, and receding, θR, contact angles were measured with the Wilhelmy technique. The contact angle hysteresis was significant but could be eliminated by subjecting the system to acoustic vibrations. Surface roughness affects all contact angles, but only the vibrated ones, θV, agree with the Wenzel equation. The contact angle obtained by averaging the cosines of θA and θR is a good approximation for θV, provided that roughness is not too large or the angles too small. Zisman's approach was employed to obtain the critical surface tension of wetting (CST) of the solid surfaces. The CST increases with roughness in accordance with Wenzel equation. Advancing, receding, and vibrated angles yield different results. The θA is known to be characteristic of the main hydrophobic component (the fluoropolymer). The θV is a better representation of the average wettability of the surface (including the presence of defects).  相似文献   

8.
Contact angles and contact angle hysteresis are very sensitive to surface heterogeneity. The degree of coverage of a surface by organic monolayers can be estimated by using the average of the cosines of advancing and receding angles in the equation of Cassie. This estimate can be refined by using a calibration curve computed from an idealized model of a heterogeneous surface.

Adhesion can be significantly influenced by the presence of monolayers and partial monolayers on adherends. These monolayers often control the rate of wetting by an adhesive and also the ultimate contact angle of the system. There is also some speculation that such monolayers might act as weak boundary layers.

Since contact angles are so sensitive to coverage by monolayers (1-2), the question arises as to what extent contact angles can be used to measure surface coverage. The work described in this paper was undertaken to answer that question. While the concepts developed here are applicable to any heterogeneous system, they were developed primarily to study the adsorption and depletion of organic monolayers on high energy surfaces.  相似文献   

9.
Contact angles and contact angle hysteresis are very sensitive to surface heterogeneity. The degree of coverage of a surface by organic monolayers can be estimated by using the average of the cosines of advancing and receding angles in the equation of Cassie. This estimate can be refined by using a calibration curve computed from an idealized model of a heterogeneous surface.

Adhesion can be significantly influenced by the presence of monolayers and partial monolayers on adherends. These monolayers often control the rate of wetting by an adhesive and also the ultimate contact angle of the system. There is also some speculation that such monolayers might act as weak boundary layers.

Since contact angles are so sensitive to coverage by monolayers (1-2), the question arises as to what extent contact angles can be used to measure surface coverage. The work described in this paper was undertaken to answer that question. While the concepts developed here are applicable to any heterogeneous system, they were developed primarily to study the adsorption and depletion of organic monolayers on high energy surfaces.  相似文献   

10.
11.
We report the fabrication of a sticky superhydrophobic paper surface with extremely high contact angle hysteresis: advancing contact angle ~150° (superhydrophobic) and receding contact angle ~10° (superhydrophilic). In addition, we report the controlled tunability of the contact angle hysteresis from 149.8 ± 5.8° to 3.5 ± 1.1°, while maintaining superhydrophobicity, as defined through an advancing contact angle above 150°. The hysteresis was tuned through the controlled fabrication of nano-scale features on the paper fibers via selective plasma etching. The variations in contact angle hysteresis are attributed to a transition of the liquid–surface interaction from a Wenzel state to a Cassie state on the nano-scale, while maintaining a Cassie state on the micro-scale. Superhydrophobic cellulosic surfaces with tunable stickiness or adhesion have potential applications in the control of aqueous drop mobility and the transfer of drops on inexpensive, renewable substrates.  相似文献   

12.
Effect of the coating method on the formation of superhydrophobic polydimethylsiloxane–urea copolymer (TPSC) surfaces, modified by the incorporation of hydrophobic fumed silica nanoparticles was investigated. Four different coating methods employed were: (i) layer-by-layer spin-coating of hydrophobic fumed silica dispersed in an organic solvent onto TPSC films, (ii) spin-coating of silica–polymer mixture onto a glass substrate, (iii) spray coating of silica/polymer mixture by an air-brush onto a glass substrate, and (iv) direct coating of silica–polymer mixture by a doctor blade onto a glass substrate. Influence of the coating method, composition of the polymer/silica mixture and the number of silica layers applied on the topography and wetting behavior of the surfaces were determined. Surfaces obtained were characterized by scanning electron microscopy (SEM), white light interferometry (WLI) and advancing and receding water contact angle measurements. It was demonstrated that superhydrophobic surfaces could be obtained by all methods. Surfaces obtained displayed hierarchical micro-nano structures and superhydrophobic behavior with static and advancing water contact angles well above 150° and fairly low contact angle hysteresis values.  相似文献   

13.
Advancing and receding contact angles on paraffin (PF) and poly(methyl methacrylate) (PMMA) have been measured for solutions of hydroxypropyl cellulose (HPC) and hydroxycthyl cellulose (HEC), two hydrophohic polymers differing considerably in their surface activity at the air-water interface. Consistent with observations made previously with hydrocarbon-chain surfactant solutions, advancing contact angles with PF are the same as those observed with pure liquids having the same surface tension, while those with PMMA are considerably greater. Receding contact angles for these polymer solutions appear to he the same as those observed with pure liquids. Consequently, this leads to less wettability in an advancing mode and greater apparent contact angle hysteresis than might be expected. Concurrent studies of HPC and HEC adsorption with the same PMMA samples used in the wetting studies and estimates of adsorption of HPC and HEC at the air-water interface indicate that these effects on wetting are due primarily to greater nonspecific polymer adsorption to the air-water interface than to the more polar PMMA-water interface.  相似文献   

14.
Dynamic contact angle measurements and X-ray photoelectron spectroscopy (XPS) were used to investigate the surface compositions and surface rearrangement of poly(imide-siloxane) with various molecular weights and contents of amine-terminated poly(dimethyl siloxane) (ATPDMS). Four different water contact angles were measured to study the poly(imide-siloxane) surface: the initial advancing angle, the equilibrium advancing angle, the initial receding angle, and the equilibrium receding angle. Poly(imide-siloxane) with 2350 and 4300 g/mol of ATPDMS showed higher initial and equilibrium advancing contact angles than those of poly(imide-siloxane) with 433 g/mol of ATPDMS. Since the mobility of ATPDMS segments depended on the chain length of ATPDMS, the molecular weight of ATPDMS determined the surface composition of poly(imide-siloxane), the rate of surface rearrangement, and the contact angle hysteresis. Poly(imide-siloxane)s with 2850 and 4300 g/mol of ATPDMS were mostly covered with ATPDMS even if just 1 wt% of ATPDMS was incorporated, while poly(imide-siloxane) with 433 g/mol of ATPDMS was mostly covered with polyimide segments and partially with ATPDMS. The rate of surface rearrangement and the contact angle hysteresis decreased with the increasing molecular weight as well as content of ATPDMS. The actual ATPDMS-enriched layer thickness was also investigated by XPS. The actual thickness of the ATPDMS-enriched layer was about 15 nm for 2850 g/mol and 4300 g/mol of ATPDMS-modified poly(imide-siloxane) and about 7.5 nm for 433 g/mol of ATPDMS-modified poly(imide-siloxane)  相似文献   

15.
Low-voltage electrowetting on dielectrics on substrates with a thin layer of lubricating fluid to reduce contact angle hysteresis is reported here. On smooth and homogeneous solid surfaces, it is extremely difficult to reduce contact angle hysteresis (contact angle difference between advancing and receding drop volume cycle) and the electrowetting hysteresis (contact angle difference between increasing and decreasing voltage cycle) below 10°. On the other hand, electrowetting hysteresis on rough surfaces can be relatively large (~30°); therefore, they are not useful for most of the fluidic devices. In the present report, we demonstrate that using a thin layer of dielectric lubricating fluid on top of the solid dielectric surface reduces the contact angle hysteresis as well as electrowetting hysteresis below 2° on smooth as well as rough surfaces. Electrowetting on lubricating fluid-coated surfaces also show a threshold behavior and the threshold voltage depends on the viscosity of the lubricating fluid. Modified Lippmann equation is used to explain the electrowetting on lubricant-coated surfaces quantitatively. The experimental system can be modeled as two series capacitor, one each for dielectric lubricating fluid and solid dielectric, which jointly govern the electrowetting behavior, whereas the lubricating fluid also minimizes the contact angle hysteresis  相似文献   

16.
The effect of air plasma treatment on wetting and energy properties, surface composition and morphology of polyether ether ketone (PEEK) was investigated. The influence of the storage time on the surface properties of plasma‐treated polymer plate was also examined. The properties were determined by advancing and receding contact angle measurements, Fourier transform infrared spectroscopy supported by theoretical spectrum modelling, X‐ray photoelectron spectroscopy and optical profilometry. Three theoretical approaches were used in the determination of the apparent surface free energy of the untreated and plasma‐treated PEEK samples from the measured contact angles of probe liquids (water, formamide, diiodomethane): the contact angle hysteresis method, the Owens and Wendt approach and the Lifsthitz ? van der Waals acid–base approach. It was found that air plasma treatment of PEEK causes significant chemical and morphological changes of the polymer surface, which are reflected in the decrease of contact angles from 83.4° to 11.7° for water after 180 s plasma treatment. This is due to the formation of polar functional groups resulting in the increase of the surface hydrophilicity. After plasma treatment the apolar component of the surface free energy practically does not change, while the polar component increases significantly, especially for plates treated for 180 s, from 0 to 19.6 mJ m?2. In addition, the modified PEEK surface is not stable during storage and it acquires more hydrophobic character. © 2016 Society of Chemical Industry  相似文献   

17.
Various techniques have been employed to improve the wettability of polypropylene materials for a wide range of applications. In this study, polypropylene nonwovens were treated in oxygen plasma for improving water adsorption properties. The effects of plasma treatment on wetting and water adsorption behavior were characterized using dynamic contact angle measurements and dynamic sorption measurements. The introduction of hydrophilic groups was detected by attenuated total reflection–Fourier transform infrared spectroscopy. The plasma treatment roughened the fiber surface revealed by atomic force microscopy. The roughened and hydrophilic surface resulted in the change in advancing and receding contact angles. The dynamic sorption measurements also examined the water adsorption behavior of the materials. The investigation revealed that plasma treatment could significantly improve the water adsorption properties of polypropylene nonwovens. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2157–2160, 2007  相似文献   

18.
The phenomenon of hysteresis of contact angle is an important topic subject to a long time of argument.A simple hydrostatic model of sessile drops under the gravity in combination with an ideal surface roughness model is used to interpret the process of drop volume increase or decrease of a planar sessile drop and to shed light on the contact angle hysteresis and its relationship with the solid surface roughness. With this model, the advancing and receding contact angles are conceptually explained in terms of equilibrium contact angle and surface roughness only,without invoking the thermodynamic multiplicity. The model is found to be qualitatively consistent to experimental observations on contact angle hysteresis and it suggests a possible way to approach the hysteresis of three-dimensional sessile drops.  相似文献   

19.
Urine wetting properties may influence the design and performance of catheters, urinalysis instruments, and lab-on-a-chip technologies. In this study the advancing contact angle adv of urine on several materials is characterized. Material type and surface tension have a significant effect on adv, while pretreatment and aging do not. Mean urine adv are between ≈78° and ≈89° on hydrophilic surfaces, and up to over ≈105° on hydrophobic surfaces. Expected urine contact angles will decrease from the DI water contact angles by on average 10°, and up to 20°, while urine surface tension will be lower than DI water by 12.12 mN/m and 18.53 mN/m. A unit change (mN/m) in surface tension results in a 0.75° change in adv. These results indicate that systems attempting to exploit urine wetting must account for highly variable conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号