首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chimeric RNA/DNA and modified DNA oligonucleotides have been shown to direct gene-conversion events in vitro through a process involving proteins from several DNA-repair pathways. Recent experiments have extended the utility of these molecules to plants, and we previously demonstrated that plant cell-free extracts are competent to support oligonucleotide-directed genetic repair. Using this system, we are studying Arabidopsis DNA-repair mutants and the role of plant proteins in the DNA-repair process. Here we describe a method for investigating mechanisms of plastid DNA-repair pathways. Using a genetic readout system in bacteria and chimeric or modified DNA oligonucleotides designed to direct the conversion of mutations in antibiotic resistance genes, we have developed an assay for genetic repair of mutations in a spinach chloroplast lysate system. We report genetic repair of point and frameshift mutations directed by both types of modified oligonucleotides. This system enables the mechanistic study of plastid gene repair and facilitates the direct comparison between plant nuclear and organelle DNA-repair pathways.  相似文献   

2.
RNA/DNA嵌合分子介导的高效基因修复   总被引:2,自引:1,他引:1  
汤富酬  韩嵘  薛友纺 《遗传》2000,22(4):265-268
本文介绍了RNA/DNA嵌合分子介导的高效基因修复技术。这一技术是1996年开始发展起来的全新技术,它通过人工合成的双链开环RNA/DNA嵌合分子转染细胞而使特定基因靶位点产生单碱基改变,从而修复突变基因。这一技术高效(目前最高可达50%以上)、特异性强、安全、无随机插入致变的危险、无免疫反应、无明显毒性,能够用于定点突变、基因敲除、动植物功能基因组学、药物遗传学等很多方面的研究,在不久的将来能够应用于人类基因治疗,具有很高的应用价值和医学前景。 Abstract:We introduce a new technique?targeted gene correction directed by chimeric RNA/DNA oligonucleotides which began at 1996.It uses synthetic double?stranded non?circular RNA/DNA chimeric oligonucleotides to transfect cells and make a single?based change at the targeted site of the target gene.It is highly efficient (the highest efficiency is more than 50%),highly special,safe,without danger of mutation caused by random insertion,without immune response,and without obvious toxicity.It can be used to make point mutation,or gene knock?out plants and animals,and is very likely to be used in human gene therapy in the near future.It is also valuable in the study of functional genomics,pharmacogenetics,and medicine.  相似文献   

3.
Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice   总被引:3,自引:0,他引:3  
Site-specific mutagenesis in a rice genome was obtained by introducing chimeric RNA/DNA oligonucleotides (COs) by means of particle bombardment. Three COs were designed to target the independent codons for Pro-171, Trp-548 and Ser-627 of the endogenous rice acetolactate synthase (ALS) gene so it would confer resistance to ALS-inhibiting herbicides. Sequencing of the ALS gene of herbicide-resistant plants demonstrated that the ALS sequence was modified in a site-specific fashion. The efficiency of gene conversion mediated by COs was estimated to be 1×10-4. These results demonstrate that CO-directed gene targeting is feasible in rice.Abbreviations ALS Acetolactate synthase - BS Bispyribac-sodium - Cf Chlorsulfuron - CO Chimeric RNA/DNA oligonucleotide Communicated by H. Uchimiya  相似文献   

4.
Molecules that interact with DNA in a sequence-specific manner are attractive tools for manipulating gene sequence and expression. For example, triplex-forming oligonucleotides (TFOs), which bind to oligopyrimidine.oligopurine sequences via Hoogsteen hydrogen bonds, have been used to inhibit gene expression at the DNA level as well as to induce targeted mutagenesis in model systems. Recent advances in using oligonucleotides and analogs to target DNA in a sequence-specific manner will be discussed. In particular, chemical modification of TFOs has been used to improve binding to chromosomal target sequences in living cells. Various oligonucleotide analogs have also been found to expand the range of sequences amenable to manipulation, including so-called "Zorro" locked nucleic acids (LNAs) and pseudo-complementary peptide nucleic acids (pcPNAs). Finally, we will examine the potential of TFOs for directing targeted gene sequence modification and propose that synthetic nucleases, based on conjugation of sequence-specific DNA ligands to DNA damaging molecules, are a promising alternative to protein-based endonucleases for targeted gene sequence modification.  相似文献   

5.
RNA is one class of relatively unexplored drug targets. Since RNAs play a myriad of essential roles, it is likely that new drugs can be developed that target RNA. There are several factors that make targeting RNA particularly attractive. First, the amount of information about the roles of RNA in essential biological processes is currently being expanded. Second, sequence information about targetable RNA is pouring out of genome sequencing efforts at unprecedented levels. Third, designing and screening potential oligonucleotide therapeutics to target RNA is relatively simple. The use of oligonucleotides in cell culture, however, presents several challenges such as oligonucleotide uptake and stability, and selective targeting of genes of interest. Here, we review investigations aimed at targeting RNA with oligonucleotides that can circumvent several of these potential problems. The hallmark of the strategies discussed is the use of short oligonucleotides, which may have the advantage of higher cellular uptake and improved binding selectivity compared to longer oligonucleotides. These strategies have been applied to Group I introns from the mammalian pathogens Pneumocystis carinii and Candida albicans. Both are examples of fungal infections that are increasing in number and prevalence.  相似文献   

6.
Single‐stranded oligonucleotides (ssODNs) can be used to direct the exchange of a single nucleotide or the repair of a single base within the coding region of a gene in a process that is known, generically, as gene editing. These molecules are composed of either all DNA residues or a mixture of RNA and DNA bases and utilize inherent metabolic functions to execute the genetic alteration within the context of a chromosome. The mechanism of action of gene editing is now being elucidated as well as an understanding of its regulatory circuitry, work that has been particularly important in establishing a foundation for designing effective gene editing strategies in plants. Double‐strand DNA breakage and the activation of the DNA damage response pathway play key roles in determining the frequency with which gene editing activity takes place. Cellular regulators respond to such damage and their action impacts the success or failure of a particular nucleotide exchange reaction. A consequence of such activation is the natural slowing of replication fork progression, which naturally creates a more open chromatin configuration, thereby increasing access of the oligonucleotide to the DNA template. Herein, how critical reaction parameters influence the effectiveness of gene editing is discussed. Functional interrelationships between DNA damage, the activation of DNA response pathways and the stalling of replication forks are presented in detail as potential targets for increasing the frequency of gene editing by ssODNs in plants and plant cells.  相似文献   

7.
Bergeron LJ  Sen K  Sen D 《Biochimie》2008,90(7):1064-1073
The property of charge (electron hole) flow in DNA duplexes has been the subject of intensive study. RNA-DNA heteroduplexes have also been investigated; however, little information exists on the conductive properties of purely RNA duplexes. In investigating the relative conductive properties of a three molecule DNA-DNA duplex design, using piperidine and aniline to break strands at modified bases, we observed that duplexes with guanine-rich termini generated a large oxidative end-effect, which could serve as a highly sensitive reporter of charge flow through the duplexes. The end-effect was found faithfully to report attenuations in charge flow due to certain single-base mismatches within a duplex. Comparative charge flow experiments on DNA-DNA and RNA-RNA duplexes found large end-effects from both, suggesting that the A and B family of double helices conduct charge comparably. The sheer magnitude of the end-effect, and its high sensitivity to helical imperfections, suggest that it may be exploited as a sensitive reporter for DNA mismatches, as well as a versatile device for studying the structure, folding, and dynamics of complexly folded RNAs and DNAs.  相似文献   

8.
9.
The ability to edit plant genomes through gene targeting (GT) requires efficient methods to deliver both sequence‐specific nucleases (SSNs) and repair templates to plant cells. This is typically achieved using Agrobacterium T‐DNA, biolistics or by stably integrating nuclease‐encoding cassettes and repair templates into the plant genome. In dicotyledonous plants, such as Nicotinana tabacum (tobacco) and Solanum lycopersicum (tomato), greater than 10‐fold enhancements in GT frequencies have been achieved using DNA virus‐based replicons. These replicons transiently amplify to high copy numbers in plant cells to deliver abundant SSNs and repair templates to achieve targeted gene modification. In the present work, we developed a replicon‐based system for genome engineering of cereal crops using a deconstructed version of the wheat dwarf virus (WDV). In wheat cells, the replicons achieve a 110‐fold increase in expression of a reporter gene relative to non‐replicating controls. Furthermore, replicons carrying CRISPR/Cas9 nucleases and repair templates achieved GT at an endogenous ubiquitin locus at frequencies 12‐fold greater than non‐viral delivery methods. The use of a strong promoter to express Cas9 was critical to attain these high GT frequencies. We also demonstrate gene‐targeted integration by homologous recombination (HR) in all three of the homoeoalleles (A, B and D) of the hexaploid wheat genome, and we show that with the WDV replicons, multiplexed GT within the same wheat cell can be achieved at frequencies of ~1%. In conclusion, high frequencies of GT using WDV‐based DNA replicons will make it possible to edit complex cereal genomes without the need to integrate GT reagents into the genome.  相似文献   

10.
利用DNA同源重组方法(基因打靶)对动物基因组进行修饰是转基因研究的重要手段之一。为了构建一个高效的通用型基因打靶载体,本研究以pBS246质粒为骨架,在两个LoxP序列之间插入正筛选标记新霉素磷酸转移酶(neo)基因和绿色荧光蛋白(EGFP)基因;在两个LoxP序列外侧分别插入两组携带"8碱基"酶切位点的多克隆位点序列(MCS-1和MCS-2)和负筛选标记单纯疱疹病毒胸苷激酶(HSV-tk)基因,构建成通用型基因打靶载体pGT-V1,并且在C2C12细胞中验证了载体中各个元件的功能。该载体具有如下特点:1)在载体中引入绿色荧光标记,可以实时监控载体的转染效率,而转染效率的提高为高效基因打靶提供了保证;2)在两个LoxP位点间插入绿色荧光标记,可以直观监测打靶后遗留的筛选标记的去除情况,并且可以通过流式细胞仪或免疫磁珠法,将最终去除了筛选标记的阳性细胞(即丢失绿色荧光的细胞)分选出来,降低筛选标记在中靶细胞中可能产生的负面影响;3)采用"8碱基"酶切位点的MCS序列,便于DNA大片段的连接和重组,极大提高了该载体的通用性。总之,该载体优化了基因打靶的技术手段,为有效开展基因打靶和转基因动物研究提供了新平台。  相似文献   

11.
Vector systems to deliver, integrate and express therapeutic genes in host cells are essential for gene therapy. In the present study, we investigated a novel vector system for integration and expression of a transgene. In this system, the transgene expression was driven by an endogenous RNA polymerase I (Pol I) promoter after being integrated into the ribosomal DNA (rDNA) locus. Human coagulation factor IX coding sequence (FIX), with an internal ribosome entry sites element at its leader region, was targeted into the 18S rDNA locus via homologous recombination. FIX protein expression, which was under the control of the endogenous Pol I promoter, was found to be similar to that of a moderate Pol II promoter. The average FIX expression level of the rDNA recombinants was additionally enhanced to that from a strong Pol II promoter as a result of elimination of position effects. Our data suggest the possibility of applying this system in gene therapy for hereditary diseases.  相似文献   

12.
13.
BACKGROUND: Plasmid DNA (pDNA) dissociation from polyamine gene vectors after cellular uptake has not been well characterized. A more detailed understanding of this process could lead to more efficient gene transfer agents. Since RNA is present in the cytoplasm at high concentrations and due to its structural similarity to DNA, we were interested in its conceivable interaction with polyamine gene vectors. METHODS: In a first set of experiments gene vectors were incubated in cell lysate and pDNA release was investigated by Southern blot analysis with or without RNase A pretreatment and by confocal laser scanning microscopy. Further, interaction of polyamine gene vectors with RNA was investigated by fluorescence quenching assay. These methods were complemented by a functionality assay using isolated nuclei. RESULTS: The incubation of gene vectors with cell lysate resulted in the dissociation of pDNA from the complexes. This effect was abolished when the cell lysate was pretreated with RNase A. The addition of RNA in the absence of cell lysate led also to a dissociation of pDNA. This process commenced instantaneously after the addition of RNA as analyzed by fluorescence quenching. When gene vectors were incubated in cell lysate containing isolated nuclei, the dissociation of pDNA from the polyamine gene vectors occurred preferentially extranuclearally as confirmed by confocal laser scanning microscopy. These results were further corroborated in a functional assay. CONCLUSIONS: These data suggest that RNA induces pDNA dissociation from the polyamine gene vectors. Furthermore, this process apparently occurs in the cytoplasm before the gene vectors enter the nucleus.  相似文献   

14.
Single molecule fluorescent microscopy is a method for the analysis of the dynamics of biological macromolecules by detecting the fluorescence signal produced by fluorophores associated with the macromolecule. Two fluorophores located in a close proximity may result in Förster resonance energy transfer (FRET), which can be detected at the single molecule level and the efficiency of energy transfer calculated. In most cases, the experimentally observed distribution of FRET efficiency exhibits a significant width corresponding to 0.07–0.2 (on a scale of 0–1). Here, we present a general approach describing the analysis of experimental data for a DNA/RNA duplex. We have found that for a 15 bp duplex with Cy3 and Cy5 fluorophores attached to the opposite ends of the helix, the width of the energy transfer distribution is mainly determined by the photon shot noise and the orientation factor, whereas the variation of inter-dye distances plays a minor role.  相似文献   

15.
Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) has gained popularity as a facile method of examining RNA structure both in vitro and in vivo, exploiting accessibility of the ribose 2′-OH to acylation by N-methylisatoic anhydride (NMIA) in unpaired or flexible configurations. Subsequent primer extension terminates at the site of chemical modification, and these products are fractionated by high-resolution gel electrophoresis. When applying SHAPE to investigate structural features associated with the wild-type and analog-substituted polypurine tract (PPT)–containing RNA/DNA hybrids, their size (20–25 base pairs) rendered primer extension impractical. As an alternative method of detection, we reasoned that chemical modification could be combined with tandem mass spectrometry, relying on the mass increment of RNA fragments containing the NMIA adduct (Mr = 133 Da). Using this approach, we demonstrate both specific modification of the HIV-1 PPT RNA primer and variations in its acylation pattern induced by replacing template nucleotides with a non-hydrogen-bonding thymine isostere. Our selective 2′-hydroxyl acylation analyzed by mass spectrometry strategy (SHAMS) should find utility when examining the structure of small RNA fragments or RNA/DNA hybrids where primer extension cannot be performed.  相似文献   

16.
应用SSA报告载体提高ZFN和CRISPR/Cas9对猪IGF2基因的打靶效率   总被引:3,自引:0,他引:3  
IGF2(Insulin-like growth factor 2)基因作为最复杂多样的生长因子之一,对猪胎儿发育以及出生后生长发育和肌肉生成起着非常重要的作用。通过基因组编辑技术对我国本地猪种的IGF2基因作精确的遗传修饰,对于提高本地猪种的瘦肉率具有重要的育种意义。文章在蓝塘猪胎儿成纤维细胞(Porcine fetal fibroblasts, PEF)中检测了锌指核酸酶(Zinc finger nucleases, ZFN)和CRISPR/Cas9对IGF2基因的打靶效率,结果表明CRISPR/Cas9对IGF2基因的切割效率最高可达9.2%,显著高于ZFN的切割效率(<1%),但两者均未达到作为体细胞核移植(Somatic nuclear transfer, SCNT)供体细胞所需的打靶效率。应用SSA (Single-strand annealing)报告载体筛选技术来富集IGF2基因被ZFN和CRISPR/Cas9修饰过的PEF细胞,结果表明,该技术可使CRISPR/Cas9的打靶效率提高5倍左右,对ZFN的打靶效率具有更大的增强作用。  相似文献   

17.
18.
Efficient targeting of the IL-4 gene in a BALB/c embryonic stem cell line   总被引:6,自引:0,他引:6  
Embryonic stem (ES) cell lines have been derived from the inner cell mass of day 3.5 blastocysts of the inbred mouse strain BALB/cJ. Twenty-three lines were karyotyped and three were selected for injection into C57BL/6J host blastocysts. Two of the three lines, BALB/c-I and BALB/c-IV, produced germ-line chimaeras. The suitability of the BALB/c-I line for gene targeting experiments was tested by transfecting a targeting construct for the interleukin-4 (IL-4) gene. Transfected BALB/c-I cells exhibited efficient homologous recombination of the targeting vector and transmitted the induced mutation through the germline. This newly-characterized BALB/c-ES cell line thus provides an alternative to the traditional 129-derived and the recently described C57BL/6 embryonic stem cell lines, and will be useful in disrupting genes involved in the immune system. Furthermore, the genetically pure BALB/c IL-4 deficient mice will aid in studying the role of IL-4 in several infectious disease models in which the BALB/c mouse is a susceptible strain.This work is dedicated to the memory of Georges Köhler who died during the completion of these studies.  相似文献   

19.
Summary In this chapter, we describe an approach using a peptide nucleic acid (PNA) clamp to directly and irreversibly modify plasmid DNA, without affecting either its supercoiled conformation or its ability to be efficiently transcribed. This strategy enables investigators to functionalize their gene of interest by direct coupling of ligands (fluorophores, peptide, proteins, sugars or oligonucleotides) to plasmid DNA. This approach provides versatile tools to study the mechanisms of gene delivery and to circumvent some of the main obstacles of synthetic gene delivery systems, such as specific targeting and efficient delivery. The proof-of-principal of PNA-dependent gene chemistry (PDGC) was demonstrated with a fluorescently labeled PNA that allowed generation of a highly fluorescent preparation of plasmid DNA that was functionally and conformationally intact. Fluorescent-PNA/DNA was used to identify critical parameters involved in naked DNA and non-viral gene delivery technology. The greatest potential of PDGC lies in the ability to attach specific ligands (e.g., peptides, proteins) to the plasmid DNA in order to overcome cellular barriers of non-viral gene delivery systems. In this regard, specific examples of ligands coupled to DNA are described and their effect on increasing the efficacy of gene therapy is presented  相似文献   

20.
DNA and RNA contents in 20 brain regions or nuclei of the rat were determined by a highly sensitive method using high-performance liquid chromatography with electrochemical detection. The high DNA and RNA contents were found in the hypothalamic nuclei, especially the median eminence-arcuate nucleus. These results may be available for the preparation of nucleic acids as the regional control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号