首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A stabilized node-based smoothed finite element method (sNS-FEM) is formulated for three-dimensional (3-D) elastic-static analysis and free vibration analysis. In this method, shape functions are generated using finite element method by adopting four-node tetrahedron element. The smoothed Galerkin weak form is employed to create discretized system equations, and the node-based smoothing domains are used to perform the smoothing operation and the numerical integration. The stabilization term for 3-D problems is worked out, and then propose a strain energy based empirical rule to confirm the stabilization parameter in the formula. The accuracy and stability of the sNS-FEM solution are studied through detailed analyses of benchmark cases and actual elastic problems. In elastic-static analysis, it is found that sNS-FEM can provide higher accuracy in displacement and reach smoother stress results than the reference approaches do. And in free vibration analysis, the spurious non-zero energy modes can be eliminated effectively owing to the fact that sNS-FEM solution strengths the original relatively soft node-based smoothed finite element method (NS-FEM), and the natural frequency values provided by sNS-FEM are confirmed to be far more accurate than results given by traditional methods. Thus, the feasibility, accuracy and stability of sNS-FEM applied on 3-D solid are well represented and clarified.  相似文献   

2.
The edge‐based smoothed finite element method (ES‐FEM) was proposed recently in Liu, Nguyen‐Thoi, and Lam to improve the accuracy of the FEM for 2D problems. This method belongs to the wider family of the smoothed FEM for which smoothing cells are defined to perform the numerical integration over the domain. Later, the face‐based smoothed FEM (FS‐FEM) was proposed to generalize the ES‐FEM to 3D problems. According to this method, the smoothing cells are centered along the faces of the tetrahedrons of the mesh. In the present paper, an alternative method for the extension of the ES‐FEM to 3D is investigated. This method is based on an underlying mesh composed of tetrahedrons, and the approximation of the field variables is associated with the tetrahedral elements; however, in contrast to the FS‐FEM, the smoothing cells of the proposed ES‐FEM are centered along the edges of the tetrahedrons of the mesh. From selected numerical benchmark problems, it is observed that the ES‐FEM is characterized by a higher accuracy and improved computational efficiency as compared with linear tetrahedral elements and to the FS‐FEM for a given number of degrees of freedom. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A sub?domain smoothed Galerkin method is proposed to integrate the advantages of mesh?free Galerkin method and FEM. Arbitrarily shaped sub?domains are predefined in problems domain with mesh?free nodes. In each sub?domain, based on mesh?free Galerkin weak formulation, the local discrete equation can be obtained by using the moving Kriging interpolation, which is similar to the discretization of the high?order finite elements. Strain smoothing technique is subsequently applied to the nodal integration of sub?domain by dividing the sub?domain into several smoothing cells. Moreover, condensation of DOF can also be introduced into the local discrete equations to improve the computational efficiency. The global governing equations of present method are obtained on the basis of the scheme of FEM by assembling all local discrete equations of the sub?domains. The mesh?free properties of Galerkin method are retained in each sub?domain. Several 2D elastic problems have been solved on the basis of this newly proposed method to validate its computational performance. These numerical examples proved that the newly proposed sub?domain smoothed Galerkin method is a robust technique to solve solid mechanics problems based on its characteristics of high computational efficiency, good accuracy, and convergence. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
An effective surface integral and finite element hybrid (SIFEH) method has been developed to model fracture problems in finite plane domains. This hybridization by (incrementally) linear superposition combines the best features of both component methods. Finite elements are used to model the finite domain (and eventually nonlinearity), while continuous distributions of dislocations (resulting in surface integral equations) are used to model the fracture (i.e. displacement discontinuity). This method has been implemented in a computer program and results of representative problems are presented: these compare very well with known solutions and they demonstrate the computational advantages of SIFEH over other numerical methods (including the individual components).  相似文献   

5.
This paper summarizes the development of the surface integral and finite element hybrid method for two and three dimensional fracture mechanics analysis. The fracture, which is a discontinuity in the displacement field, is modeled explicitly and efficiently by use of dislocations for two dimensional analysis and by dipoles of point forces for three dimensional applications. The boundary value problem of a fracture in a finite domain is solved by (incremental) superposition of a finite element model of the finite body without the crack and a surface integral model of an infinite body with the crack, ensuring proper traction and displacement matching at the boundaries. Finite elements are also used to model nonhomogeneity and plasticity, though isotropic kernels are used for the integral equation. A variety of two and three dimensional problems have been modeled and excellent agreement with analytical solutions has been obtained. Propagation problems in two dimensions have also been modeled and the predicted results agree very well with experimental observations.
Résumé On résume le développement de la méthode de l'intégrale de surface et des éléments finis hybrides pour l'analyse de la mécanique de rupture à deux et à trois dimensions. La rupture, considérée comme une discontinuité dans un champ de déplacement, est représentée de manière explicite et avec efficience en recourant aux dislocations dans le cas de l'analyse à deux dimensions, et aux dipoles de forces ponctuelles dans le cas des applications à trois dimensions. Le problème de la valeur aux limites d'une rupture dans un domaine fini est solutionné par la superposition par incréments d'un modèle à éléments finis d'un corps fini dépourvu de fissures et d'un modèle en intégrale de surface d'un corps infini pourvu d'une fissure, en s'assurant que les conditions appropriées de traction et de déplacement s'accordent aux limites. On utilise également les éléments finis pour représenter une non homogénité ou de la plasticité, bien que des kernels isotropes soient employés pour l'équation intégrale. On a représenté divers problèmes à deux et à trois dimensions et on a obtenu un excellent accord avec les solutions analytiques. Les problèmes de propagation en deux dimensions ont également été modélisés, et ces résultats prévus sont en excellent accord avec les observations expérimentales.
  相似文献   

6.
A finite element method for contact problems in crack mechanics is developed on the basis of the penalty function method. The method is successfully applied to three important problems in fracture mechanics: a crack propagated from a pin hole, a two-point supported specimen with an edge crack loaded by a stamp, and a thick plate with a through-wall crack under bending force.  相似文献   

7.
The recently developed edge-based smoothed finite element method (ES-FEM) is extended to the mix-mode interface cracks between two dissimilar isotropic materials. The present ES-FEM method uses triangular elements that can be generated automatically for problems even with complicated geometry, and strains are smoothed over the smoothing domains associated with the edges of elements. Considering the stress singularity in the vicinity of the bimaterial interface crack tip is of the inverse square root type together with oscillatory nature, a five-node singular crack tip element is devised within the framework of ES-FEM to construct singular shape functions. Such a singular element can be easily implemented since the derivatives of the singular shape term ${(1/\sqrt r)}$ are not needed. The mix-mode stress intensity factors can also be easily evaluated by an appropriate treatment during the domain form of the interaction integral. The effectiveness of the present singular ES-FEM is demonstrated via benchmark examples for a wide range of material combinations and boundary conditions.  相似文献   

8.
Strain smoothing operation has been recently adopted to soften the stiffness of the model created using tetrahedron mesh, such as the Face-based Smoothed Finite Element Method (FS-FEM), with the aim to improve solution accuracy and the applicability of low order tetrahedral elements. In this paper, a new method with strain smoothing operation based on the edge of four-node tetrahedron mesh is proposed, and the edge-based smoothing domain of tetrahedron mesh is serving as the assembly unit for computing the 3D stiffness matrix. Numerical results demonstrate that the proposed method possesses a close-to-exact stiffness of the continuous system and gives better results than both the FEM and FS-FEM using tetrahedron mesh or even the FEM using hexahedral mesh in the static and dynamic analysis. In addition, a novel domain-based selective scheme is proposed leading to a combined ES-T-/NS-FEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed method is an innovative and unique numerical method with its distinct features, which possesses strong potentials in the successful applications for static and dynamics problems.  相似文献   

9.
This paper examines the theoretical bases for the smoothed finite element method (SFEM), which was formulated by incorporating cell‐wise strain smoothing operation into standard compatible finite element method (FEM). The weak form of SFEM can be derived from the Hu–Washizu three‐field variational principle. For elastic problems, it is proved that 1D linear element and 2D linear triangle element in SFEM are identical to their counterparts in FEM, while 2D bilinear quadrilateral elements in SFEM are different from that of FEM: when the number of smoothing cells (SCs) of the elements equals 1, the SFEM solution is proved to be ‘variationally consistent’ and has the same properties with those of FEM using reduced integration; when SC approaches infinity, the SFEM solution will approach the solution of the standard displacement compatible FEM model; when SC is a finite number larger than 1, the SFEM solutions are not ‘variationally consistent’ but ‘energy consistent’, and will change monotonously from the solution of SFEM (SC = 1) to that of SFEM (SC → ∞). It is suggested that there exists an optimal number of SC such that the SFEM solution is closest to the exact solution. The properties of SFEM are confirmed by numerical examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, free surface flow problems involving large free surface motion are analysed using finite element techniques. In solving these problems a spatially fixed Eulerian mesh is employed, in conjunction with a moving Lagrangian free surface line. The coupling, between the equations valid on the free surface and the equations valid on the fluid domain, is carried out using hybrid finite element techniques. Physical problems involving solitary wave propagation, sloshing dynamics and porous media flow are analysed to demonstrate the developed technique.  相似文献   

11.
12.
The extended finite element method was introduced in 1999 to treat problems involving discontinuities with no or minimal remeshing through appropriate enrichment functions. This enables elements to be split by a discontinuity, strong or weak, and hence requires the integration of discontinuous functions or functions with discontinuous derivatives over elementary volumes. A variety of approaches have been proposed to facilitate these special types of numerical integration, which have been shown to have a large impact on the accuracy and the convergence of the numerical solution. The smoothed extended finite element method (XFEM), for example, makes numerical integration elegant and simple by transforming volume integrals into surface integrals. However, it was reported in the literature that the strain smoothing is inaccurate when non‐polynomial functions are in the basis. In this paper, we investigate the benefits of a recently developed Linear smoothing procedure which provides better approximation to higher‐order polynomial fields in the basis. Some benchmark problems in the context of linear elastic fracture mechanics are solved and the results are compared with existing approaches. We observe that the stress intensity factors computed through the proposed linear smoothed XFEM is more accurate than that obtained through smoothed XFEM.  相似文献   

13.
14.
Interfacial energy plays an important role in equilibrium morphologies of nanosized microstructures of solid materials due to the high interface-to-volume ratio, and can no longer be neglected as it does in conventional mechanics analysis. When designing nanodevices and to understand the behavior of materials at the nano-scale, this interfacial energy must therefore be taken into account. The present work develops an effective numerical approach by means of a hybrid smoothed extended finite element/level set method to model nanoscale inhomogeneities with interfacial energy effect, in which the finite element mesh can be completely independent of the interface geometry. The Gurtin–Murdoch surface elasticity model is used to account for the interface stress effect and the Wachspress interpolants are used for the first time to construct the shape functions in the smoothed extended finite element method. Selected numerical results are presented to study the accuracy and efficiency of the proposed method as well as the equilibrium shapes of misfit particles in elastic solids. The presented results compare very well with those obtained from theoretical solutions and experimental observations, and the computational efficiency of the method is shown to be superior to that of its most advanced competitor.  相似文献   

15.
The recently developed edge-based smoothed finite element method (ES-FEM) is extended to fracture problems in anisotropic media using a specially designed five-node singular crack-tip (T5) element. In the formulation of singular ES-FEM, only the assumed displacement values (not the derivatives) on the boundaries of the smoothing domains are needed. Thus, a layer of T5 crack-tip element is devised to construct “singular” shape functions via a simple point interpolation with a fractional order basis, without mapping procedure. The effectiveness of the present singular ES-FEM is demonstrated by intensive examples for a wide range of degrees of anisotropy.  相似文献   

16.
This letter aims at resolving the issues raised in the recent short communication (Int. J. Numer. Meth. Engng 2008; 76 (8):1285–1295. DOI: 10.1002/nme.2460 ) and answered by (Int. J. Numer. Meth. Engng 2009; DOI: 10.1002/nme.2587 ) by proposing a systematic approximation scheme based on non‐mapped shape functions, which both allows to fully exploit the unique advantages of the smoothed finite element method (SFEM) (Comput. Mech. 2007; 39 (6):859–877. DOI: 10.1007/s00466‐006‐0075‐4 ; Commun. Numer. Meth. Engng 2009; 25 (1):19–34. DOI: 10.1002/cnm.1098 ; Int. J. Numer. Meth. Engng 2007; 71 (8):902–930; Comput. Meth. Appl. Mech. Engng 2008; 198 (2):165–177. DOI: 10.1016/j.cma.2008.05.029 ; Comput. Meth. Appl. Mech. Engng 2007; submitted; Int. J. Numer. Meth. Engng 2008; 74 (2):175–208. DOI: 10.1002/nme.2146 ; Comput. Meth. Appl. Mech. Engng 2008; 197 (13–16):1184–1203. DOI: 10.1016/j.cma.2007.10.008 ) and resolve the existence, linearity and positivity deficiencies pointed out in (Int. J. Numer. Meth. Engng 2008; 76 (8):1285–1295). We show that Wachspress interpolants (A Rational Basis for Function Approximation. Academic Press, Inc.: New York, 1975) computed in the physical coordinate system are very well suited to the SFEM, especially when elements are heavily distorted (obtuse interior angles). The proposed approximation leads to results that are almost identical to those of the SFEM initially proposed in (Comput. Mech. 2007; 39 (6):859–877. DOI: 10.1007/s00466‐006‐0075‐4 ). These results suggest that the proposed approximation scheme forms a strong and rigorous basis for the construction of SFEMs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A novel method called immersed smoothed FEM using three‐node triangular element is proposed for two‐dimensional fluid–structure interaction (FSI) problems with largely deformable nonlinear solids placed within incompressible viscous fluid. The fluid flows are solved using the semi‐implicit characteristic‐based split method. Smoothed FEMs are employed to calculate the transient responses of solids based on explicit time integration. The fictitious fluid with two assumptions is introduced to achieve the continuous form of the FSI conditions. The discrete formulations to calculate the FSI forces are obtained in terms of the characteristic‐based split scheme, and the algorithm based on a set of fictitious fluid mesh is proposed for evaluating the FSI force exerted on the solid. The accuracy, stability, and convergence properties of immersed smoothed FEM are verified by numerical examples. Investigations on the mesh size ratio indicate that the stability is fairly independent of the wide range of the mesh size ratio. No additional volume correction is required to satisfy the incompressible constraints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a general theory and application of the finite element method for some special class of non-self-adjoint problems. The formulation employed here is based on the Galerkin method for linear boundary value and eigenvalue problems described by the partial differential equations of elliptic type, and it can be regarded as an extension of the usual displacement method formulated by the use of the principle of minimum potential energy. In order to illustrate its validity and feasibility, the method is applied to the problems of the two-group neutron diffusion equations and of the stability of a non-conservative system.  相似文献   

19.
A mixed hybrid finite element for three-dimensional elastic crack analysis   总被引:2,自引:0,他引:2  
A new three-dimensional crack tip element is proposed, which is based on a mixed hybrid stress/displacement model. A truncated series expansion of eigenfunctions for the straight semi-infinite crack is deduced and assumed for the internal stress and displacement fields in the element. The basic approach of constructing these hybrid elements is outlined. Their good capability, efficiency and accuracy for analyzing three-dimensional elastic crack problems are demonstrated by first numerical examples.
Résumé On propose un nouveau type d'élément tridimensionnel pour l'extrémité d'une fissure, basé sur un modèle mixte contraintes hybrides/déplacements. On en tire un développement en séries tronquées des eigenfonctions relatives à une fissure droite semi-infinie, et on suppose qu'elle est représentative des champs de contraintes internes et de déplacements dans l'élément. L'approche de base utilisée pour construire ces éléments hybrides est soulignée. On démontre par de premiers exemples numériques qu'ils ont la capacité, l'efficacité et la précision nécessaires à l'analyse des problèmes élastiques et tridimensionnels de fissuration.
  相似文献   

20.
Applied to solid mechanics problems with geometric nonlinearity, current finite element and boundary element methods face difficulties if the domain is highly distorted. Furthermore, current boundary element method (BEM) methods for geometrically nonlinear problems are implicit: the source term depends on the unknowns within the arguments of domain integrals. In the current study, a new BEM method is formulated which is explicit and whose stiffness matrices require no domain function evaluations. It exploits a rigorous incremental equilibrium equation. The method is also based on a Domain Integral Reduction Algorithm (DIRA), exploiting the Helmholtz decomposition to obviate domain function evaluations. The current version of DIRA introduces a major improvement compared to the initial version.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号