首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Background: Helicobacter pylori colonizes the acid environment of the gastric mucosa. Like other enteric bacterial pathogens, including Salmonella enterica, which must survive a brief exposure to that environment, H. pylori displays a rapid response to subtle changes in pH, which confers an increased ability to survive at more extreme acidic pH. This two‐step acid tolerance response (ATR) requires de novo protein synthesis and is dependent on the function of the global regulatory protein Fur. Objective: We have explored the physiological bases of the ATR in H. pylori. Materials and Methods: Proteomic analysis of phenotypes of H. pylori and fur mutant strains show that subtle pH changes elicit significant changes in the pattern of proteins synthesized. Results: A loss‐of‐function mutation in the fur gene, obtained by insertion of an antibiotic resistance cassette, indicated that Fur regulates the expression of a fraction of H. pylori proteins. Conclusion: A subset of proteins is involved in the ATR and confer a negative ATR phenotype.  相似文献   

2.
3.
Cloning and characterization of the fur gene from Helicobacter pylori   总被引:1,自引:0,他引:1  
The fur homologue of Helicobacter pylori was isolated by screening a plasmid-based, genomic DNA library using the Fur titration assay (FURTA). The analysis of the DNA sequence revealed significant homology with Fur proteins from various other bacterial species. The highest degree of homology was observed for the Fur protein from Campylobacter jejuni. The H. pylori fur gene on a plasmid could partially complement the fur mutation in Escherichia coli strain H1681. The repressor activity depended on addition of iron to the medium indicating that iron acts as a co-repressor for the H. pylori protein similar to Fur from other bacteria. Comparison of Fur from H. pylori strain NCTC11638 with the recently published genomic DNA sequence of another strain (26695) confirmed the identity of the fur homologue and revealed that the fur locus is highly conserved in both strains.  相似文献   

4.
5.
A ferric uptake regulatory gene (fur) was cloned from Vibrio parahaemolyticus WP1 by a polymerase chain reaction-based technique followed by functional complementation of a fur mutation in Escherichia coli. A sequence analysis showed that, at the amino acid level, the V. parahaemolyticus Fur protein is 81% identical with the Fur protein from E. coli and over 90% identical with those of the Vibrio species.  相似文献   

6.
The 12 histidine and four cysteine residues of the Fur repressor of Escherichia coli were changed, respectively, to leucine and serine by site-directed mutagenesis of the fur gene. The affects of these mutations were measured in vivo by ligation of the mutated genes to a wild-type fur promoter followed by measurement of the ability of these plasmids to regulate expression of a lacZ fusion in the aerobactin operon. In vitro affects were assayed by insertion of the mutated genes in the expression vector pMON2064 attended by isolation of the altered Fur proteins and appraisal of their capacity to bind to operator DNA. The results suggest that cysteine residues at positions 92 and 95 are important for the activity of the Fur protein.  相似文献   

7.
8.
Background: Helicobacter pylori (H. pylori) is a gram negative bacterium that can cause diseases such as peptic ulcers and gastric cancer. IL‐17A, a proinflammatory cytokine that can induce the production of CXC chemokines for neutrophil recruitment, has recently been shown to be elevated in both H. pylori‐infected patients and mice. Furthermore, studies in mouse models of vaccination have reported levels significantly increased over infected, unimmunized mice and blocking of IL‐17A during the challenge phase in immunized mice reduces protective immunity. Because many aspects of immunity had redundant or compensatory mechanisms, we investigated whether mice could be protectively immunized when IL‐17A function is absent during the entire immune response using IL‐17A and IL‐17A receptor knockout (KO) mice immunized against H. pylori. Materials and Methods: Gastric biopsies were harvested from naïve, unimmunized/challenged, and immunized/challenged wild type (WT) and KO mice and analyzed for inflammation, neutrophil, and bacterial levels. Groups of IL‐17A KO mice were also treated with anti‐IFNγ or control antibodies. Results: Surprisingly, all groups of immunized KO mice reduced their bacterial loads comparably to WT mice. The gastric neutrophil counts did not vary significantly between IL‐17A KO and WT mice, whereas IL‐17RA KO mice had on average a four‐fold decrease compared to WT. Additionally, we performed an immunization study with CXCR2 KO mice and observed significant gastric neutrophils and reduction in bacterial load. Conclusion: These data suggest that there are compensatory mechanisms for protection against H. pylori and for neutrophil recruitment in the absence of an IL‐17A‐CXC chemokine pathway.  相似文献   

9.
《Gene》1997,185(2):201-207
The Fur (ferric uptake regulator) protein controls the expression of a number of bacterial virulence determinants including those involved in iron uptake. The fur gene was cloned and characterized from Klebsiella pneumoniae. The gene is preceded by a single autoregulated promoter whose −10 region overlaps the putative Fur binding site. The autoregulated nature of the K. pneumoniae fur gene and functionality of the encoded Fur repressor were tested in Fur titration and complementation assays. A partial open reading frame upstream from the fur gene was identified as a flavodoxin (fldA) gene. An open reading frame located 50 bases downstream from the fur stop codon appears to be a truncated citA gene that, if functional, would encode only the carboxy terminus of a citrate utilization protein. The fldA-fur arrangement is also present in Escherichia coli. However, the fur-citA arrangement found in K. pneumoniae is novel. It appears that the chromosomal region downstream from the fur gene is unstable and, thus, variable even in closely related bacterial lineages. To assess the ability of the Fur protein sequence to reflect organismal phylogeny, the Fur protein tree was compared to the tree of 16S rRNA (ribosomal RNA). The Fur dataset comprises almost an order of magnitude fewer characters than the 16S rRNA but is nonetheless able to track the phylogenetic signal reasonably well, suggesting that the fur gene, like the 16S rDNA, may not be subject to horizontal gene transfer in these bacteria.  相似文献   

10.
Objective. To evaluate the efficacy of two commonly employed treatments for Helicobacter pylori infection and the impact of bacterial resistance to antibiotics on eradication rate. Methods. Ninety‐two consecutive H. pylori‐positive patients with active peptic ulcer disease were randomly enrolled to receive a 7‐day treatment with either lansoprazole 30 mg plus amoxicillin 1 g and clarithromycin 500 mg [all twice a day (b.i.d.), Group A, n = 46]; or bismuth subcitrate 125 mg four times a day (q.i.d.) plus tetracycline 500 mg q.i.d and furazolidone 200 mg b.i.d. (Group B, n = 46) H. pylori status was reassessed 30 days after completion of the therapy and bacterial resistance to the antibiotics was investigated using an in vitro assay. Results. Five patients from each study group were lost to follow up. Both treatments resulted in similar H. pylori eradication rate: 66–60% (per protocol), 59–52% (intention‐to‐treat) in Groups A and B, respectively (non significant). However, eradication improved to 79% in the absence of H. pylori resistance to clarithromycin or amoxicillin. Conclusion. Primary resistance to clarithromycin or amoxicillin may underscore a potentially serious problem for the eradication of H. pylori infection. Testing for bacterial resistance may become necessary to improve therapeutic efficacy.  相似文献   

11.
12.
Yang YJ  Sheu BS 《Helicobacter》2012,17(4):297-304
Background: The benefits of probiotics to the pediatric Helicobacter pylori infection remain uncertain. We tested whether the H. pylori‐infected children have an altered gut microflora, and whether probiotics‐containing yogurt can restore such change and improve their H. pylori‐related immune cascades. Methods: We prospectively included 38 children with H. pylori infection confirmed by a positive 13C‐urea breath test (UBT) and 38 age‐ and sex‐matched noninfected controls. All of them have provided the serum and stool samples before and after 4‐week ingestion of probiotics‐containing yogurt. The serum samples were tested for the TNF‐α, IL‐10, IL‐6, immunoglobulin (Ig) A, G, E, pepsinogens I and II levels. The stool samples were tested for the colony counts of Bifidobacterium spp. and Escherichia coli. The follow‐up UBT indirectly assessed the H. pylori loads after yogurt usage. Results: The H. pylori‐infected children had lower fecal Bifidobacterium spp. count (p = .009), Bifidobacterium spp./E. coli ratio (p = .04), serum IgA titer (p = .04), and pepsinogens I/II ratio (p < .001) than in controls. In the H. pylori‐infected children, 4‐week yogurt ingestion reduced the IL‐6 level (p < .01) and H. pylori loads (p = .046), but elevated the serum IgA and pepsinogen II levels (p < .001). Moreover, yogurt ingestion can improve the childhood fecal Bifidobacterium spp./E. coli ratio (p = .03). Conclusions: The H. pylori‐infected children have a lower Bifidobacterium microflora in gut. The probiotics‐containing yogurt can offer benefits to restore Bifidobacterium spp./E. coli ratio in children and suppress the H. pylori load with increment of serum IgA but with reduction in IL‐6 in H. pylori‐infected children.  相似文献   

13.
Background. Cyclooxygenase 2 (COX‐2) is an inducible enzyme that plays a key role in the synthesis of prostaglandins in response to inflammatory stimuli. It is expressed in the gastric mucosa as part of the response to infection with Helicobacter pylori. The specific interaction between H. pylori and the gastric epithelium that results in COX‐2 expression has not been identified. Methods. In order to investigate the hypothesis that lipopolysaccharide (LPS) from H. pylori plays a role in the induction of cyclooxygenase 2 in the stomach, gastric cell lines MKN‐7 and MKN‐45 were incubated with LPS from either H. pylori NCTC 11637 or Escherichia coli 055:B5. Incubation of cells with live H. pylori NCTC 11637 was also carried out as a positive control. Cells were then analysed for COX‐2 protein and mRNA and prostaglandin E2 synthesis. Results. Cyclooxygenase 2 protein and mRNA expression was induced by E. coli LPS and live H. pylori, but not by H. pylori LPS. Prostaglandin E2 synthesis increased in a dose‐dependent manner in both cell lines with E. coli but not H. pylori LPS. Conclusions. H. pylori LPS is of low biological activity when compared with E. coli LPS in its ability to induce the expression of cyclooxygenase 2 and synthesis of prostaglandin E2. This may provide one mechanism by which H. pylori minimizes the inflammatory response in the gastric mucosa, allowing chronic infection.  相似文献   

14.
In several Gram-negative pathogens the fur (ferric uptake regulator) gene product controls the expression of many genes involved in iron uptake and virulence. To facilitate the study of iron-regulated gene expression in Bordetella pertussis, we cloned the fur gene from this organism. The B. pertussis fur gene product was 54% identical to the Escherichia coli Fur and complemented two E. coli fur mutants. As with the E. coli fur gene, sequences upstream of the B. pertussis fur were homologous to the consensus Fur-binding site and to the consensus catabolite activator protein binding site.  相似文献   

15.
Background: Helicobacter pylori is microaerobic and turns into coccoid under aerobic conditions. In this study, two mucoid strains, A and D, were isolated from gastric biopsies which grew well on blood agar after 24‐hour incubation under aerobic as well as microaerobic conditions. The aim of this study was to identify these strains and compare their growth under aerobic and microaerobic conditions with that of control H. pylori. Materials and Methods: The two isolates A and D were identified as H. pylori according to microscopic morphology, urease, catalase and oxidase tests. Their growth under humidified aerobic and microaerobic conditions was compared with that of control H. pylori which grew only under microaerobic conditions. They were further identified by amplification of 16S rRNA, vacA alleles, cagA and ureAB genes by PCR. Their susceptibility to current antimicrobials was also examined. Results: The strains A and D produced mucoid colonies under aerobic and microaerobic conditions after 24‐hour, exhibiting the typical spiral morphology of H. pylori. The results of urease, catalase and oxidase tests were positive. Sequencing of amplified products showed 99–100% homology with those of the reference H. pylori strains in GenBank. Both strains exhibited resistance to the high concentrations of antimicrobials. Conclusions: This study reports the isolation of two mucoid strains of H. pylori with confluent growth under aerobic and microaerobic conditions. It appears that production of exopolysaccharide (EXP) could serve as a physical barrier to reduce oxygen diffusion into the bacterial cell and uptake of antibiotics. EXP protected the mucoid H. pylori isolates against stressful conditions, the result of which could be persistence of bacterial infection in the stomach.  相似文献   

16.
Background: A remarkable variety of restriction‐modification (R‐M) systems is found in Helicobacter pylori. Since they encompass a large portion of the strain‐specific H. pylori genes and therefore contribute to genetic variability, they are suggested to have an impact on disease outcome. Type I R‐M systems comprise three different subunits and are the most complex of the three types of R‐M systems. Aims: We investigated the genetic diversity and distribution of type I R‐M systems in clinical isolates of H. pylori. Material and methods: Sixty‐one H. pylori isolates from a Swedish hospital based case‐control study and 6 H. pylori isolates of a Swedish population‐based study were analyzed using polymerase chain reaction for the presence of the three R‐M systems' subunits. Representative gene variants were sequenced. Results: Although the hsdM and hsdR genes appeared conserved in our clinical H. pylori isolates, the sequences of the hsdS loci were highly variable. Despite their sequence diversity, the genes per se were present at high frequencies. We identified a number of novel allelic hsdS variants, which are distinct from corresponding hsdS loci in the sequenced H. pylori strains 26695, J99 and HPAG1. In analyses of paired H. pylori isolates, obtained from the same individuals with a 4‐year interval, we observed genetic modifications of hsdS genes in patients with atrophic gastric mucosa. Discussion: We propose that the genetic variability of hsdS genes in a bacterial population will give rise to new specificities of these enzymes, which might lead to adaptation to an ever‐changing gastric environment.  相似文献   

17.
Yin YN  Wang CL  Liu XW  Cui Y  Xie N  Yu QF  Li FJ  Lu FG 《Helicobacter》2011,16(5):389-397
Background: Long‐term Helicobacter pylori infection leads to chronic gastritis, peptic ulcer, and gastric malignancies. Indigenous microflora in alimentary tract maintains a colonization barrier against pathogenic microorganisms. This study is aimed to observe the gastric and duodenum microflora alteration after H. pylori infection in Mongolian Gerbils model. Materials and Methods: A total of 18 Mongolian gerbils were randomly divided into two groups: control group and H. pylori group that were given H. pylori NCTC J99 strain intragastrically. After 12 weeks, H. pylori colonization was identified by rapid urease tests and bacterial culture. Indigenous microorganisms in stomach and duodenum were analyzed by culture method. Histopathologic examination of gastric and duodenum mucosa was also performed. Results: Three of eight gerbils had positive H. pylori colonization. After H. pylori infection, Enterococcus spp. and Staphylococcus aureus showed occurrences in stomach and duodenum. Lactobacillus spp. showed a down trend in stomach. The levels and localizations of Bifidobacterium spp., Bacteroides spp., and total aerobes were also modified. Bacteroides spp. significantly increased in H. pylori positive gerbils. No Enterobacteriaceae were detected. Positive colonization gerbils showed a higher histopathologic score of gastritis and a similar score of duodenitis. Conclusions: Long‐term H. pylori colonization affected the distribution and numbers of indigenous microflora in stomach and duodenum. Successful colonization caused a more severe gastritis. Gastric microenvironment may be unfit for lactobacilli fertility after long‐term H. pylori infection, while enterococci, S. aureus, bifidobacteria, and bacteroides showed their adaptations.  相似文献   

18.
Background: Nowadays, there is an increasing interest in noninvasive methods to diagnose Helicobacter pylori infection. Indeed, they can profitably replace endoscopy in predicting the diagnosis. The stool antigen test for H. pylori is a noninvasive immunoassay to diagnose active infection with this bacterium in human fecal samples. The aim of this study was detection of alkyl hydroperoxide reductase protein (AhpC) antigen by immunoblotting in stool samples for diagnosis of H. pylori. Materials and Methods: Chromosomal DNA from H. pylori was isolated. AhpC gene was amplified by PCR, These amplicons were cloned into pTZ57R/T cloning vector then subcloned into pQE30 expression vector and overexpressed using isopropyl‐beta‐D‐thiogalactopyranoside in E. coli M15. AhpC protein was purified by affinity chromatography. Rabbits were immunized with the purified AhpC protein for the production of antibodies. To determine the accuracy of the test for diagnosing H. pylori infection from stool, we evaluated 84 patients (6–81 years old) using Western blot analysis by rabbit anti‐AhpC antibody. Positive rapid urease test on biopsy samples was considered as the gold standard. Results: AhpC gene was overexpressed, and AhpC protein was purified. Rabbit anti‐AhpC antibody produced after immunization with the purified AhpC protein. By immunoblotting, we detected AhpC protein in the positive stool samples. The test showed a 83.3% sensitivity (95% CI: 69.8–92.5%) and a 91.7% specificity (95% CI: 77.5–98.2). Among the children, the sensitivity was 88.2% (95% CI: 63.6–98.5) and the specificity was 100% (95% CI: 69.2–100); in adults, the sensitivity and specificity were 80.6% (95% CI: 62.5–92.5) and 88.5% (95% CI: 69.8–97.6), respectively. Conclusions: Using of AhpC antigen for diagnosis of H. pylori infection is a useful noninvasive method, accurate in adolescents and children, and can be used for the development of a stool antigen detection kit for H. pylori.  相似文献   

19.
20.
Background: The growing concern over the emergence of antibiotic‐resistant Helicobacter pylori infection is propelling the development of an efficacious vaccine to control this highly adaptive organism. Aim: We studied the use of a dendritic cell (DC)‐based vaccine against H. pylori infection in mice. Methods: The cellular immune responses to murine bone marrow‐derived DCs pulsed with phosphate‐buffered saline (PBS‐DC) or live H. pylori SS1 (HP‐DC) were assessed in vitro and in vivo. The protective immunity against H. pylori SS1 oral challenge was compared between HP‐DC or PBS‐DC immunized mice. The effect of regulatory T‐cell (Treg) depletion by anti‐CD25 antibody on HP‐DC vaccine efficacy was also evaluated. Results: HP‐DC induced a Th1‐dominant response in vitro. In vivo, HP‐DC immunized mice were characterized by a mixed Th1/Th2 peripheral immune response. However, in the stomach, HP‐DC immunized mice expressed a higher level of IFN‐γ compared to PBS‐DC immunized mice; no difference was found for interleukin‐5 expressions in the stomach. A lower bacterial colonization post‐H. pylori challenge was observed in HP‐DC immunized mice compared to PBS‐DC immunized mice with no significant difference in gastritis severity. H. pylori‐specific Th1 response and protective immunity were further enhanced in vivo by depletion of Treg with anti‐CD25 antibody. Conclusion: DC‐based anti‐H. pylori vaccine induced H. pylori‐specific helper T‐cell responses capable of limiting bacterial colonization. Our data support the critical role of effector cellular immune response in the development of H. pylori vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号