首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Nd2Fe14B and Sm2Fe17 magnetically hard alloys become thermodynamically unstable under the action of hydrogen and suffer hydrogen-induced direct and inverse phase transformations at elevated temperatures. The kinetics of these transformations is investigated. It is shown that they are diffusion-controlled and develop according to the mechanism of nucleation and growth. Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 44, No. 5, pp. 105–111, September–October, 2008.  相似文献   

2.
Tb-substituted (Nd,Tb)2Fe14B/Fe3B nanocomposite ribbons have been synthesized by melt spinning of Nd3Tb1Fe76Cu0.5Nb1B18.5 alloys. Tb substitution has significantly enhanced the value of coercivity and Curie temperature. Highest value of coercivity has been obtained as 4.76 kOe for the sample annealed at 953 K for 10 min. Curie temperature of Tb substituted sample, Nd3Tb1Fe76Cu0.5Nb1B18.5 is 549 K while Curie temperature of the sample without Tb, Nd4Fe76Cu0.5Nb1B18.5 is 535 K. Recoil hysteresis loops measured along the major demagnetization curve are steep having small recoil loop area. Temperature dependence of coercivity, remanent ratio and maximum energy product have been measured for the sample annealed at 893 K and 923 K for 10 min. At 5 K, coercivity and maximum energy product of the sample annealed at 893 K for 10 min are 5.2 kOe and 11.5 MGOe respectively and the sample annealed at 923 K for 10 min are 6 kOe and 13.1 MGOe respectively.  相似文献   

3.
Conclusions We have established the disproportionation of the Dy2Fe14B compound in hydrogen at a temperature close to 960 K and under an initial hydrogen pressure of 5.2 MPa into dysprosium hydride, iron, and iron boride. Recombination in a vacuum occurs after heating to 980 K in several stages.Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 40, No. 4, pp. 122–124, July–August, 2004.  相似文献   

4.
This paper reports the preparation and compaction of gold and aluminum nanopowders with the aim of obtaining the intermetallic compound AuAl2 in bulk form. We describe the microstructure of the starting powders and synthesized materials and compare the results to those for foreign analogs.  相似文献   

5.
We report the synthesis of one-dimensional (1-D) magnetic Fe2P nanowires and Fe2P@C core@shell nanocables by the reactions of triphenylphosphine (PPh3) with Fe powder (particles) and ferrocene (Fe(5H5)2), respectively, in vacuum-sealed ampoules at 380–400 °C. The synthesis is based on chemical conversion of micrometer or nanometer sized Fe particles into Fe2P via the extraction of phosphorus from liquid PPh3 at elevated temperatures. In order to control product diameters, a convenient sudden-temperature-rise strategy is employed, by means of which diameter-uniform Fe2P@C nanocables are prepared from the molecular precursor Fe(C5H5)2. In contrast, this strategy gives no obvious control over the diameters of the Fe2P nanowires obtained using elemental Fe as iron precursor. The formation of 1-D Fe2P nanostructures is ascribed to the cooperative effects of the kinetically induced anisotropic growth and the intrinsically anisotropic nature of hexagonal Fe2P crystals. The resulting Fe2P nanowires and Fe2P@C nanocables display interesting ferromagnetic-paramagnetic transition behaviors with blocking temperatures of 230 and 268 K, respectively, significantly higher than the ferromagnetic transition temperature of bulk Fe2P (T C = 217 K).   相似文献   

6.
Micropowders of melted and heat-treated Nd16(Fe76?x Ni x )B8 alloys system, with x = 0, 10, 20, and 25 (size distribution under 20 μm), were studied and compared with the study of nanopowders obtained, from the previous ones, by surfactant-assisted ball-milling process during 2 h. By XRD, a majority of Nd2Fe14B hard phase and a minority of α-Fe, Nd1.1Fe4B4 and NdNi2 phases were detected. The last one increases with Ni content. The crystallite size of the hard phase, in both types of samples, is not affected by the Ni content; however, the grains in micropowders are oblate, with a mean size of 37 nm, while those of the nanopowders are symmetric, with a mean size of 35 nm. Mössbauer spectra were fitted with seven sextets, which correspond to the six ferromagnetic sites of the hard phase and that of the α-Fe, and a doublet corresponding to the paramagnetic Nd1.1Fe4B4 phase. The mean hyperfine magnetic field, for both types of samples, decreases with Ni content. The hysteresis loops of both types of samples show a hard magnetic character, however, the coercive field and the M r/M s values for nanopowders are greater than those obtained for micropowders for all the Ni contents. Values of H c = 2 kOe and M r/ M s = 0.54 were obtained for nanopowders with 10 at.% Ni. From the hysteresis loops, which include the initial magnetization curve, Henkel plots for all the samples were obtained. These plots show that for micropowders, the predominant magnetic interaction is of dipolar type, while for nanopowders, the ferromagnetic exchange is the predominant one, which favored the magnetization.  相似文献   

7.
A simple and quick microwave method to prepare high performance magnetite nanoparticles (Fe3O4 NPs) directly from Fe has been developed. The as-prepared Fe3O4 NPs product was fully characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The results show that the as-prepared Fe3O4 NPs are quite monodisperse with an average core size of 80 × 5 nm. The microwave synthesis technique can be easily modified to prepare Fe3O4/Ag NPs and these NPs possess good magnetic properties. The formation mechanisms of the NPs are also discussed. Our proposed synthesis procedure is quick and simple, and shows potential for large-scale production and applications for catalysis and biomedical/biological uses.  相似文献   

8.
Magnetic entropy change (?ΔS M ) of Nd0.67 Ba0.33Mn0.98Fe0.02O3 perovskite have been analyzed by means of theoretical models. An excellent agreement has been found between the (ΔSM) values estimated by Landau theory and those obtained using the classical Maxwell relation. In order to estimate the spontaneous magnetization M s pont(T), we used the mean-field theory to analyses the (ΔSM) vs. M 2 data. The obtained M s pont(T) values are in good agreement with those found from the classical extrapolation from the Arrott plots(H/M vs. M 2), confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in our system. At a relatively low magnetic field, a phenomenological model has been used to estimate the values of the magnetic entropy change. The results are in good agreement with those obtained from the experimental data using Maxwell relation.  相似文献   

9.
Y2O3 + Nd2O3 co-stabilized ZrO2-based composites with 40 vol% WC were fully densified by pulsed electric current sintering (PECS) at 1350 °C and 1450 °C. The influence of the PECS temperature and Nd2O3 co-stabilizer content on the densification, hardness, fracture toughness and bending strength of the composites was investigated. The best combination of properties was obtained for a 1 mol% Y2O3 and 0.75 mol% Nd2O3 co-stabilized composite densified for 2 min at 1450 °C under a pressure of 62 MPa, resulting in a hardness of 15.5 ± 0.2 GPa, an excellent toughness of 9.6 ± 0.4 MPa.m0.5 and an impressive 3-point bending strength of 2.04 ± 0.08 GPa. The hydrothermal stability of the 1 mol% Y2O3 + 1 mol% Nd2O3 co-stabilized ZrO2-WC (60/40) composites was compared with that of the equivalent 2 mol% Y2O3 stabilized ceramic. The double stabilized composite did not degrade in 1.5 MPa steam at 200 °C after 4000 min, whereas the yttria stabilized composite degraded after less than 2000 min. Moreover, the (1Y,1Nd) ZrO2-WC composites have a substantially higher toughness (~9 MPa.m0.5) than their 2Y stabilized equivalents (~7 MPa.m0.5).  相似文献   

10.
In this work, we are going to show the method based on mean-field scaling for the Nd0.6Sr0.3Ca0.1Mn0.975Fe0.025 O3 sample, where from scaling of experimental magnetization data, the mean-field exchange parameter λ and the f function of the equation of state \(M(T,H)=B_{S} [\frac {\left ({H+H_{\text {ex}}} \right )}{T}]\) are directly determined. The scaling approach allows finding the dependence of H ex on T or higher powers of M, which determine the order of the phase transition. Quantum spin number has been determined. In this study, we use \(\left | {\Delta S_{M} (T)} \right |\) obtained from isothermal magnetization measurements; we compare this result to mean-field theory fittings from a novel scaling method through the use of theoretical results S, g, and λ. The obtained results by mean-field theory are suitable and in good agreement with the classical Maxwell relation.  相似文献   

11.
The influence of doping with Ti and Al on the structure and hydrogen sorption properties of ZrFe2 was studied by XRD, XRSMA, and measurement of hydrogen absorption and desorption isotherms at pressure up to 300 MPa. The hydrogen capacity and equilibrium desorption pressures of hydrides decrease with increasing Al content at a constant ratio of Ti and Zr. The increase in the Ti content at a constant content of Al in alloys also leads to a decrease in hydrogen capacity; however, the equilibrium desorption pressures of hydrides increase considerably. Zr1−x Ti x (Fe1−y Al y )2 (x= 0.2–0.8; y = 0.05–0.4) alloys were investigated.  相似文献   

12.
13.
The effect of the addition of Al2O3 (50 wt%) on the dehydrogenation of MgH2 was investigated. Composites of the oxide and the hydride were prepared in two ways: by milling the components separately or by co-milling them together in a gear-driven planetary ball mill for 10 min. The co-milled composite (MgH2–Al2O3) released approximately 90% of the maximum hydrogen storage capacity within 30 min under a pressure of 0.003 MPa at 250 °C. In contrast, the composite of the separately milled components did not release hydrogen even after 2 h under the same conditions. BET measurement with nitrogen gas showed a negligible difference in the specific surface areas between the co-milled and separately milled composites. However, the saturation amount of hydrogen gas for the co-milled composite was 30% larger than that of the mixture of separately milled hydride and oxide. The activation energy for hydrogen desorption from the co-milled composite, calculated on the basis of the surface-controlled model was 80 kJ mol−1, a value that is 50 kJ mol−1 lower than that of mixture of the separately milled MgH2 and Al2O3.  相似文献   

14.
Magnetization measurements of the magneto-superconducting K0.8Fe1.7Se2 single crystals (T C =29.6 K) at various applied fields and temperatures have been performed. In the superconducting range, two unusual phenomena are observed. (i) The presence of paramagnetic Meissner effect up to 20 Oe, which is revealed by the positive field-cooled magnetization curves. (ii) A double peak in the hysteresis loop at low temperatures. The isothermal magnetization measured at 35 K clearly indicates the presence of a tiny amount of a ferromagnetic substance (probably pure Fe). The two peculiar phenomena observed are attributed to this impurity.  相似文献   

15.
YBa2Fe3O8(YBFO) epitaxial films are prepared on (100) SiTrO3 single crystal substrate by polymer-assisted non-fluorine chemical solution deposition (CSD) method. The influence of firing temperature on texture degree, microstructure, and physical properties of YBFO films is systematically investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and SQUID magnetometer. YBFO film fired at 1070 °C exhibits best epitaxial quality with FWHM value of (103) phi-scan and (005) omega-scan is 0.19° and 0.45°, respectively, and highly dense and smooth morphology. A weak ferromagnetism transition was observed at 68 K in the YBFO film.  相似文献   

16.
In this paper, we report an ultralow thermal conductivity and a high-temperature phase stability of the (Nd1?x Ce x )2Zr2O7+x system over the temperature range from room temperature to 1600 °C and over a wide composition range (0.2 ≤ x ≤ 0.8), and the (Nd1?x Ce x )2Zr2O7+x system is therefore considered a strong candidate material for the fabrication of next-generation high-temperature thermal barrier coatings. The observed thermal conductivities (0.65–1.0 W/mK) are about 60–40% lower than those of undoped Nd2Zr2O7 over the same temperature range (100–700 °C) and indicate a glass-like behavior. For comparison, the variation in the thermal conductivity with the temperature of the (Gd1?x Ce x )2Zr2O7+x system with similar point defects was also measured, and the observed behavior was almost the same as that of undoped Gd2Zr2O7 and was mostly determined by phonon–phonon scattering (λ ∝ 1/T). The effect of point defect scattering and strong phonon scattering sources (rattlers) on the thermal conductivity is also discussed in this paper. The results of this study suggest that the ultralow thermal conductivity of (Nd1?x Ce x )2Zr2O7+x can be attributed to the presence of rattlers because of the large difference between the ionic radii of the Nd3+ and Ce4+ ions.  相似文献   

17.
Fluctuations in the conductivity of Ba0.72K0.28Fe2As2 single crystal are studied systematically by resistance measurements as a function of temperature and magnetic field. A clear Maki?Thompson and Aslamakov?Larkin (MT–AL) two- to three-dimensional (2D–3D) crossover is found on the excess conductivity (Δσ) curves as the temperature approaches the superconducting critical temperature, T c. 3D fluctuations in superconductivity are realized near T c that are well fitted to experimental data by the 3D Aslamazov–Larkin theory. The Maki–Thompson model shows a 2D conductivity fluctuation above the 2D-3D temperature transition, T 0, which depends on magnetic field. Results show that the 2D-3D dimensional crossover moves to lower temperature with increasing magnetic field. The values of the transition temperature and the crossover in the reduced temperature, ln(ε 0), as functions of magnetic field were used to determine the coherence length and the lifetime, τ φ , of the fluctuational pairs at the temperature of 35 K. Analysis of the Ba0.72K0.28Fe2As2 single crystal gives a value of 3.76 × 10??12 s for the τ φ in the absence of magnetic field and it decreases to 2.4 × 10??12 s in magnetic field of 13 T.  相似文献   

18.
Superexchange effects play an important role in the determination of crystal structures; however, there has been much less reported on how they determine the stability of clusters. Using evolutionary search strategies and DFT+U (density functional theory with the Hubbard U correction) calculations, we investigate the global minimum-energy structures of Fe12On clusters. Among predicted Fe12On clusters, a cage-shaped Fe12O12 cluster with unexpected stability was observed. In addition, the bare Fe12O12 cluster is shown to possess an extremely large energy gap (2.00 eV), which is greater than that of C60, Au20 and Al13?clusters. Using a Heisenberg model, we traced the origin of the unexpected stability of the bare Fe12O12 cluster to magnetic competition between the nearest-neighbor exchange constant J1 and the next-nearest neighbor exchange constant J2 that was induced by the superexchange interactions. The bare Fe12O12 cluster is thus a unique molecule that is stable and chemically inert.
  相似文献   

19.
A novel sandwich-type CNTs/Fe3O4/RGO composite with Fe3O4 as a bridge was successfully prepared through a simple solvent-thermal and ultrasonic method. The structure and morphology of the composite have been characterized by Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. This new structure can effectively prevent the agglomeration of GO and the combination of CNTs/Fe3O4 and RGO shows a strong reflection loss (RL) (?50 dB) at 8.7 GHz with absorber thickness of 2.5 mm. Moreover, compared with CNTs/Fe3O4/GO composite, it is found that the thermal treating process is beneficial to enhance the microwave absorption properties, which may be attributed to high conductivity of RGO. On this basis, the microwave absorbing mechanism is systematically discussed. All the data show that the CNTs/Fe3O4/RGO composite exhibits excellent microwave absorption properties with light density and is expected to have potential applications in microwave absorption.  相似文献   

20.
The Pb-Bi-Te system has been studied in the composition region PbTe-Bi2Te3-Te at temperatures from 300 to 430 K using emf measurements on reversible concentration cells of the type
( - )PbTe(s)|liquid electrolyte, Pb2 + |(Pb - Bi - Te)(s)( + ).( - )PbTe(s)|liquid electrolyte, Pb^{2 + } |(Pb - Bi - Te)(s)( + ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号