首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A robust and effective composite film combined the benefits of Nafion, room temperature ionic liquid (RTIL) and multi‐wall carbon nanotubes (MWNTs) was prepared. Hemoglobin (Hb) was successfully immobilized on glassy carbon electrode surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Hb were investigated in detail. A pair of well‐defined and quasi‐reversible redox peaks of Hb was obtained in 0.10 mol·L?1 pH 7.0 phosphate buffer solution (PBS), indicating that the Nafion‐RTIL‐MWNTs film showed an obvious promotion for the direct electron transfer between Hb and the underlying electrode. The immobilized Hb exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0×10?6 to 2.5×10?4 mol·L?1, with a detection limit of 8.0×10?7 mol·L?1 (S/N=3). The apparent Michaelis‐Menten constant (Kmapp) was calculated to be 0.34 mmol·L?1. Moreover, the modified electrode displayed a good stability and reproducibility. Based on the composite film, a third‐generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

2.
A novel peroxyoxalate chemiluminescence system has been designed for the determination of Triton X‐100 (TX‐100), in which a hydrophobic fluorescent conjugated polymer, poly[2,5‐bisnonyloxy‐1,4‐phenylene‐ethynylene‐9,10‐anthrylene] (PPEA) was employed as a fluorophor. A strong enhanced intensity of chemiluminescence (CL) was observed in the presence of TX‐100, due to the improved emission efficiency of PPEA in the presence of TX‐100. Under optimum conditions, the detection range of Triton X‐100 is between 1.0×10?7 and 1.0× 10?4 mol·L?1, with a detection limit at 6.0×10?8 mol·L?1. The relative standard deviation is 2.4% (n=6) for 1.0×10?6 mol·L?1 Triton X‐100. This method provides satisfying results in the detection of TX‐100 in nature water and biological samples with high sensitivity and wide linear range.  相似文献   

3.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on Co(III)-Schiff base [Co(5-NO2- Salen)(PBu3)]ClO4•H2O (where 5-NO2-SalenH=bis(5-nitrosalycilaldehyde)ethylenediamine) as a new carrier for construction of perchlorate-selective electrode by incorporating the membrane ingredients on the surface of a graphite electrodes has been reported. The proposed electrode possesses a very wide Nernestian potential linear range to perchlorate from 1.0×10-6 to 5.0×10-1 mol•L-1 with a slope of (59.4±0.9) mV per decade of perchlorate concentration with a low detection limit of 5.0×10-7 mol•L-1 and good perchlorate selectivity over the wide variety of other anions. The developed electrode has an especially fast response (<5 s) and a wide pH independent range (3.0—12.0) in comparison with recent reported electrodes and can be used for at least 2 months without any considerable divergence in their potential response. This electrode was used for the determination of perchlorate in river water, drinking water, sludgy water and human urine with satisfactory results without complicated and time consuming pretreatment.  相似文献   

4.

Silver nanoparticles enhanced glucose oxidase electrodes were prepared on the basis of chitosan matrix. The enzyme electrodes exhibited high sensitivity and excellent response performance to glucose with a linear range from 1×10?6 to 8×10?3 mol · L?1. And the time reaching the steady‐state amperometric response was less than 5 seconds. The inhibition percentage of this enzyme electrode against copper ions concentration was linear ranging from 1.2×10?6 to 5×10?5 mol · L?1. These properties of enzyme electrodes are probably due to the excellent electron transfer of silver nanoparticles and the orientation of glucose oxidase molecule.  相似文献   

5.
A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine (DA) and uric acid (UA) in the presence of high concentration ascorbic acid (AA). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used for characterization. This electrode was successfully used to resolve the overlapping voltammetric response of DA, UA and AA into three well‐defined peaks with a large anodic peak difference (ΔEpa) of about 184 mV for DA and 324 mV for UA. The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1× 10?7 to 3.8×10?5 mol·L?1 with a detection limit of 3.6×10?8 mol·L?1 (S/N=3) and on the UA concentration from 3.0×10?7 to 5.7×10?5 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 with coexistence of 1.0×10?3 mol·L?1 AA. The modified electrode shows good sensitivity and selectivity.  相似文献   

6.
唐明宇袁若  柴雅琴 《中国化学》2006,24(11):1575-1580
The third generation amperometric biosensor for the determination of hydrogen peroxide (H2O2) has been described. For the fabrication of biosensor, o-aminobenzoic acid (oABA) was first electropolymerized on the surface of platinum (Pt) electrode as an electrostatic repulsion layer to reject interferences. Horseradish peroxidase (HRP) absorbed by nano-scaled particulate gold (nano-Au) was immobilized on the electrode modified with polymerized o-aminobenzoic acid (poABA) with L-cysteine as a linker to prepare a biosensor for the detection of H2O2. Amperometric detection of H2O2 was realized at a potential of +20 mV versus SCE. The resulting biosensor exhibited fast response, excellent reproducibility and sensibility, expanded linear range and low interferences. Temperature and pH dependence and stability of the sensor were investigated. The optimal sensor gave a linear response in the range of 2.99×10^-6 to 3.55×10^-3 mol·L^-1 to H2O2 with a sensibility of 0.0177 A·L^-1·mol^-1 and a detection limit (S/N = 3) of 4.3×10^-7 mol·L^-1. The biosensor demonstrated a 95% response within less than 10 s.  相似文献   

7.
A Triton X-100-4.0G-D (4.0G-D refers to a 4.0-generation dendrimer) was brought forward as a new phosphorescence labeling reagent. Two types of specific affinity adsorption (AA) reactions (direct method and sandwich method) were carried out between the labeling product of Triton X-100-4:0G-D-Wheat germ agglutinin (WGA) and alkaline phosphatase (ALP), the product of AA reaction preserved the good characteristics of room temperature phosphorescence (RTP) of 4.0G-D and △Ip of the product was proportional to the content of ALP. According to the fact stated above, a new method for the determination of trace ALP by affinity adsorption solid substrate-room temperature phosphorimetry (AA-SS-RTP) was established on the basis of WGA labeled with the Triton X-100-4.0G-D. The detection limits were 0.20 ag·spot^-1 (corresponding concentration: 5.0×10^-16 g·mL^-1, namely 5.0×10^-18 mol·L^-1) for a direct method and 0.14 ag·spot^-1 (corresponding concentration: 3.5×10^-16 g·mL^-1, namely 3.5×10^-18 mol·L^-1) for a sandwich method, respectively. For their high sensitivity, good repeatability and high accuracy, the direct method and sandwich method have been successfully appfied to determine the content of ALP in human serum, and the results were coincided with the clinical detection results of the enzyme-linked immunosorbent assay method by the Zhangzhou Hospital of Traditional Chinese Medicine. Meanwhile, the mechanism for the determination of trace ALP by AA-SS-RTP was discussed.  相似文献   

8.
用紫外可见光谱、稳态荧光发射及荧光寿命测定研究了核酸猝灭十二烷基磺酸钠胶束中的健那绿荧光。水溶液中弱的健那绿荧光在十二烷基磺酸钠胶束中被大大加强,其最大发射从425纳米移至410纳米,核酸的加入将猝灭健那绿的荧光,当健那绿浓度为2.5×105 mol•L-1时,荧光猝灭(F0/F)分别与小牛胸腺DNA及鱼精DNA在2.4×108 到 1.08×107及 1.9×108 到 3.8×108 mol•L-1范围内成正比, 检测限分别为1.3×108 mol•L-1 (小牛胸腺DNA)及6.3×109 mol•L-1 (鱼精DNA)。当DNA浓度较高时, 将系统偏离Stern-Volmer方程。这是因为动态猝灭和静态猝灭同时存在。方法已应用于鸡血提取液中DNA的测定, 测定结果与紫外法一致。  相似文献   

9.
As an alternative selection of electrocatalytic surface modifier, the electrochemically generated copper oxides is re‐ investigated by using cyclic voltammetry (CV), scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). Interesting phenomena have been found, which indicate that the electrodeposition from the Cu2+ solution under cyclic voltammetric conditions can generate a transparent Cu(OH)2 crystalline on the surface of glassy carbon electrodes, and this crystalline can be further transferred to a novel cubic opaque CuO crystalline of about 300 nm in size by second step of cyclic voltammetry in pH 12 NaOH solution. The final electrode (denoted as nano‐CuO/GCE) can catalyze the oxidation (as well as the reduction) of H2O2 in basic solutions. It shows pH dependent three‐part catalytic mechanism in the range from pH 7 to pH 14. In 0.10 mol/L NaOH solution, the amperometric response at 0.15 V (vs. SCE) can give a current sensitivity as high as 139 mA/(mol·L?1) in the rage of 5.0×10?7?6.0×10?4 mol/L with a lower detection limit (s/n=3) of 2.5×10?8 mol/L, and a current sensitivity of 78.4 mA/(mol·L?1) in the rage of 6.0×10?4–2.0×10?3 mol/L. This electrode also has excellent reproducibility and stability. The mechanisms for the two steps of preparation and the catalytic reactions are proposed. The nano‐CuO crystalline modified electrode may have more applications in the field of electrochemical sensing.  相似文献   

10.
儿茶酚胺是一类非常重要的神经递质,在人体的心血管系统、神经系统、内分泌腺、肾脏、平滑肌等组织系统的生理活动中起着广泛的调节作用。肾上腺素为儿茶酚胺的一种,建立灵敏、高效的肾上腺素检测技术具有重要的临床意义。本文将银(Ⅲ)配合物与鲁米诺组成新的流动注射化学发光体系,利用碱性介质中肾上腺素对三价银配合物-鲁米诺化学发光体系有明显的增强效应来测定肾上腺素的含量,并据此建立了高效测定肾上腺素的流动注射化学发光新方法。在优化的条件下,该方法测定肾上腺素的线型范围为1.0×10-9~1.0×10-7 mol L-1,检出限为8.0×10-10 mol L-1,对1.5×10-8 mol L-1肾上腺素11次平行测定,其相对标偏差为2.9%。利用建立的分析方法测定了药物肾上腺素,并对三价银-鲁米诺化学发光新体系测定肾上腺素的反应机理进行了讨论。  相似文献   

11.
本文报道了一种以牛磺酸双核铜络合物为中性载体的硫氰酸根PVC膜电极。该电极对硫氰酸根有良好的电位响应并呈现出anti-Hofmeister行为,其选择性顺序SCN->I->ClO4->Sal->NO3-> NO2-> Br- > Cl- > SO3-> SO4 2-。在20℃ pH 5.0的磷酸缓冲溶液中,其线性范围为1.0´10 -1~ 1.0´10-6mol×L-1,检测线为8.0×10 -7mol•L-1,斜率为 -56.5 mV/pcSCN-。紫外、红外和交流阻抗研究表明电极的高选择性与载体的立体结构和分析物与中心金属离子的作用相关。将该电极用于废水和人体尿液中硫氰酸根的测定,获得了较满意的结果。  相似文献   

12.
When the concentration of dodecyl benzene sulfonic acid sodium salt (SDBS) is 0.7 mmol·L?1, the electrochemical and electrochemiluminescence (ECL) intensity of Ru(bpy)32+‐chlorpheniramine maleate (CPM) system at the Au electrode were studied. The results showed that compared with the absence of SDBS, enhancement of the ECL intensity was 14‐fold at Au electrode. Base on this, an ECL method was established for efficient and simple determination of CPM at Au electrode. Under the optimum experimental condition, the enhanced ECL intensities had good linear relationship with the concentration of CPM in the range of 1.0×10?4–1.0×10?7 mol·L?1, and a linear regression equation was obtained as follows: I (counts)=48.805×106c+394.03 (r=0.9975), the detection limit for CPM was 1.4×10?8 mol·L?1. The RSD for 5 times determinations of 1.0×10?5 mol·L?1 CPM was 3.2%. The results of recovery test were between 96.3%–102.5%, and the RSD of recovery test (n=5) was 2.7%. In addition, eleven kinds of tertiary amines‐Ru(bpy)32+ systems were investigated in the absence and presence of SDBS. The results showed that the enhancement of SDBS on ECL intensity of tertiary amines‐Ru(bpy)32+ systems was universal.  相似文献   

13.
An electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles using a potentiostatic method. The effects of pH, ratio between template molecule and monomer, number of cycles for electropolymerization, and of the solution for extraction were optimized. The current of the electro-active model system hexacyanoferrate(III) and hexacyanoferrate(IV) decreased linearly with successive addition of ThPh in the concentration range between 4.0?×?10?7?~?1.5?×?10?5 mol·L?1 and 2.4?×?10?4?~?3.4?×?10?3 mol·L?1, with a detection limit of 1.0?×?10?7 mol·L?1. The sensor has an excellent recognition capability for ThPh compared to structurally related molecules, can be regenerated and is stable.
Figure
In this paper, an electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine (o-PD) on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles to enhance the sensitivity of the sensor. Therefore, the sensor showed a high sensitivity for ThPh determining. Peak current of [Fe(CN)6]3?/[Fe(CN)6]4? varied linearly with the concentration of ThPh in the range of 4.0×10-7~1.5×10-5 mol·L-1 and 2.4×10-4~3.4×10-3 mol·L-1, and the detection limit reached 1.0×10-7 mol·L-1. Compared to structurally related molecules, the sensor also has a high recognition capability for ThPh. With excellent regeneration property and stability, the present sensor maybe provides a new class of polymer modified electrodes for sensor applications.  相似文献   

14.
《Analytical letters》2012,45(15):2537-2547
A promising nanotechnological material, zirconia nanoparticles modified with SiO2, was used as a medium for the immobilization of laccase to construct a novel biosensor that exhibits sensitive amperometric response to catechol in 0.1 mol · L?1 phosphate buffer (pH 6.0) using cyclic voltammetry. The linear response to catechol was from 1.0 × 10?6 to 1.0 × 10?4 mol · L?1 and the detection limit was 3.5 × 10?7 mol · L?1 at a signal-to-noise ratio of 3. The biosensor exhibited good stability, precision, and few interferences.  相似文献   

15.
A novel kinetic method for determination of uric acid in human serum by means of an uncatalyzed BZ system consisting of potassium bromate and p‐hydroxybenzaldehyde (p‐HBA) in sulfuric acid medium was proposed, in which the analyte perturbation to the system was recorded close to the bifurcation point. The potential change was directly proportional to the logarithm of concentration of uric acid in the range of 3.73×10?8–7.48×10?4 mol·L?1 (r=0.9983) with a detection limit of 7.45×10?9 mol·L?1 and a recovery from 98.9% to 101.1%. A comparison between the proposed technique and other methods indicated that results obtained were in agreement with those in clinical detection. In addition, the possible mechanism of action of uric acid on the uncatalyzed BZ reaction was also discussed briefly.  相似文献   

16.
Silver (Ag) nanoparticles were directly electrodeposited on multi-walled carbon nanotubes (MWCNT) in AgNO3/LiNO3 containing EDTA (ethylenediaminetetraacetic acid). The structure and nature of the resulting Ag/MWNT composite were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and the distribution shape of Ag nanoparticles was found to be dependent on the presence of EDTA. The modified electrode showed excellent electrocatalytic activity to redox reaction of hydrogen peroxide and the mechanism of hydrogen peroxide was partly reversible procession with oxidation and reduction peaks at 0.77 and -0.83 V, respectively. The oxidation and reduction peak currents were linearly related to hydrogen peroxide concentration in the range of 1×10^-6-3×10^-4 and 1 ×10^-8-7× 10^-4 mol·L^-1 with correlation coefficients of 0.996 and 0.986, and 3s-detection limit of 9 × 10^-7 and 7 × 10^-9 mol·L^-1.  相似文献   

17.
The kinetic method for the determination of phosphate microamounts was described. The developed method is based on catalytic effect of phosphate on sodium pyrogallol-5-sulphonate (PS) by dissolved oxygen. The reaction was followed spectrophotometrically by measuring the rate of change in the values of the absorbance of the oxidation product at 437 nm. The optimum reaction conditions are PS (0.44×10^-3 mol·L^-1) and HClO4 (3.6×10^-6 mol·L^-1) at 25 ℃. Following this procedure, phosphate can be determined with a linear calibration graph up to 0.23 μg·mL^-1. The interference effect of several species was also investigated and it was found that the most common cations and anions did not interfere with the determination. The developed procedure was successfully applied to the determination of phosphate in natural waters and soil.  相似文献   

18.
Oxine (8-hydroxyquinoline) was used as an efficient and selective ligand for stripping voltammetry trace determination of Mn(II). A validated square-wave adsorptive cathodic stripping voltammetry method has been developed for determination of Mn(II) selectively as oxine complex using both the bare carbon paste electrode (CPE) and the modified CPE with 7 % (w/w) montmorillonite-Na clay. Modification of carbon paste with montmorillonite clay was found to greatly enhance its adsorption capacity. Limits of detection of 45 ng l?1 (8.19?×?10?10 mol L?1) and 1.8 ng l?1 (3.28?×?10?11 mol L?1) Mn(II) were achieved using the bare and modified CP electrodes, respectively. The achieved limits of detection of Mn(II) as oxine complex using the modified CPE are much sensitive than the detection limits obtained by most of the reported electrochemical methods. The developed stripping voltammetry method using both electrodes was successfully applied for trace determination of Mn(II) in various water samples without interferences from various organic and inorganic species.  相似文献   

19.
Novel films consisting of multi-walled carbon nanotubes (MWCNTs) were fabricated by means of chemical vapor deposition with decomposition of either acetonitrile (ACN) or benzene (BZ) using ferrocene as catalyst. The electrochemical responses of MWCNT-based films towards the ferrocyanide/ferricyanide, [Fe(CN)6]3?/4? redox couple were probed by means of cyclic voltammetry and electrochemical impedance spectroscopy at 25.0?±?0.5?°C. Both MWCNT-based films exhibit Nernstian response towards [Fe(CN)6]3?/4? with some slight kinetic differences. Namely, heterogeneous electron transfer rate constants lying in ranges of 2.69?×?10?2?C1.7?×?10?3 and 9.0?×?10?3?C2.6?×?10?3?cm·s?1 were obtained at v?=?0.05?V·s?1 for MWCNTACN and MWCNTBZ, respectively. The detection limit of MWCNTACN, estimated to be about 4.70?×?10?7?mol·L?1 at v?=?0.05?V·s?1, tends to become slightly poorer with the increase of the scan rate, namely at v?=?0.10?V·s?1 the detection limit of 1.70?×?10?6?mol·L?1 was determined. Slightly poorer response ability was exhibited by MWCNTBZ; specifically the detection limits of 1.57?×?10?6 and 4.35?×?10?6?mol·L?1 were determined at v?=?0.05 and v?=?0.10?V·s?1, respectively. The sensitivities of MWCNTACN and MWCNTBZ towards [Fe(CN)6]3?/4? were determined as 1.60?×?10?7 and 1.51?×?10?7?A·L·mol?1·cm?2, respectively. The excellent electrochemical performance of MWCNTACN is attributed to the presence of incorporated nitrogen in the nanotube??s structure.  相似文献   

20.
The electrochemical behavior of aquabis(1,10‐phenanthroline)copper(II) perchlorate [Cu(H2O)(phen)2]·2ClO4, where phen=1,10‐phenanthroline, on binding to DNA at a glassy carbon electrode (GCE) and in solution, was described. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) results showed that [Cu(H2O)(phen)2]2+ had excellent electrochemical activity on the GCE with a couple of quasi‐reversible redox peaks. The interaction mode between [Cu(H2O)(phen)2]2+ and double‐strand DNA (dsDNA) was identified to be intercalative binding. An electrochemical DNA biosensor was developed with covalent immobilization of human immunodeficiency virus (HIV) probe for single‐strand DNA (ssDNA) on the modified GCE. Numerous factors affecting the probe immobilization, target hybridization, and indicator binding reactions were optimized to maximize the sensitivity and speed of the assay. With this approach, a sequence of the HIV could be quantified over the range from 7.8×10?9 to 3.1×10?7 mol·L?1 with a linear correlation of γ=0.9987 and a detection limit of 1.3×10?9 mol·L?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号