首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
王超  曹鹏  李杰  黄伟达 《现代电子技术》2007,30(14):114-118
离散小波变换(Discrete Wavelet Transform,DWT)需要较多的运算量以及较大的存储器空间,为了使之适用于实时的图像处理应用,就需要开发特殊的架构和芯片来提高离散小波变换的运算性能。基于提升的二维DWT提出了一种新型的VLSI结构——LLSP架构,其结合逐级和基于行的架构这两者特点,带来了硬件开销和存储器空间的降低,并可以用于多提升步骤的扩展以及多级二维离散小波变换。  相似文献   

2.
本文介绍一种小波变换提升算法的硬件实现,它可以设置为5/3和9/7小波变换并用于JPEG2000中。该硬件实现采用了折叠结构以达到减少硬件开销和提高硬件使用率的目的。其中的乘法部分采用了正则符号编码(CSD,Canoni Csigned digit)把乘法运算转化为移位加/减操作,加快了变换速度。同时采用了嵌入式延拓进行数据延拓,也达到了加快运算速度和减少存储要求的目的。整个架构采用VHDL实现并通过仿真验证。  相似文献   

3.
一种适合JPEG2000的离散小波变换VLSI统一结构   总被引:7,自引:0,他引:7  
华林  朱柯  周晓芳  章倩苓 《微电子学》2003,33(4):280-283,287
提出了一种基于提升算法(1ifting)的离散小波变换(DWT)统一结构。它无需额外的边界延拓过程,经配置后可适用于JPEG2000中的无损或有损小波变换。通过将边界延拓过程内嵌于离散小波变换中,可以降低功耗,减少所需内存。为了达到更高的处理速度和硬件利用率,采用了流水线和折叠结构。这种高效紧凑的离散小波变换结构适用于JPEG2000编码器和各种实时图像/视频应用系统.  相似文献   

4.
郭欣  王超  曹鹏  陆燕   《电子器件》2007,30(5):1708-1711
离散小波变换在图像压缩处理中有着重要的作用,并得到了广泛的应用.与传统的基于卷积的架构相比较,基于提升的架构具有需要较少的硬件资源,占用较少的芯片面积等优点.在DSP Builder中实现了基于提升的一维离散小波变换,并通过构造相关的存储器控制逻辑,完成了二维离散小波变换架构的设计.利用该架构对图像进行离散小波变换,与软件变换的结果相比较,并计算出图像的峰值信噪比,验证了其正确性.  相似文献   

5.
相对于JPEG中二维离散余弦变换(DCT)来说,在JPEG2000标准中,二维离散小波变换(DWT)是图像处理的核心变换。然而在小波变换过程中,有一个不可避免的问题,就是小波系数的动态范围的确定,它直接决定计算精度以及存储空间的利用率。文章针对5/3提升小波算法的硬件架构,在理论分析中进行了三次小波系数动态范围的整定并给出详细的数学推导。最后得到的位宽数是对以往宽泛结论的较为精确地整定。可以在保证运算精度的前提下,避免增加无谓的硬件资源和存储器。最后使用Matlab对标准图像进行一到五级的小波分解,验证了该结论的有效性。  相似文献   

6.
辛勤  钟艳华  刘春风  潘利明 《现代电子技术》2010,33(18):124-126,130
提升算法的推出使得离散小波变换硬件的快速实现成为可能。翻转结构在提升架构的基础上进一步提高运算速度。在此,对翻转结构的舍入误差进行了分析,在翻转结构的基础上,对提升步骤进行了合并,提出一种有效的DWT硬件实现方案。实验结果表明,通过采用流水线模式提出的这种硬件结构,在关键路径约束的条件下,可以充分利用硬件资源。  相似文献   

7.
离散小波变换需要较大的运算量和运算空间,为了提高JPEG2000图像压缩速度,提出一种基于提升算法的二维离散5/3小波变换的VLSI架构,这种结构同时进行行变换和列变换。文章对于VLSI架构的五大模块(行小波变换运算模块、两个列小波变换模块、FIFO寄存组和系统整体控制模块)的硬件实现给出了相应的方案。在Quartus II 7.2的平台下对于设计的该系统的时序仿真测试结果表明,综合分析后系统最小组合逻辑时延为7.142ns,可达到的最高频率为140.02MHz。时序仿真测试中当系统工作频率为100MHz,数据吞吐率达到773.944Mbit/s。  相似文献   

8.
基于提升算法的离散小波变换FPGA实现   总被引:1,自引:0,他引:1       下载免费PDF全文
吴志林  王超  李杰  卜爱国   《电子器件》2007,30(1):290-293
离散小波变换是当今许多图像处理和压缩技术的基础,并得到了广泛的应用.本文以4阶Daubechies小波为例阐述基于提升算法的离散小波变换的原理,并给出其硬件实现架构,然后进行仿真,将仿真结果与Matlab软件实现结果进行比较,结果表明硬件实现与软件实现基本一致,该硬件架构与基于传统的卷积方法实现相比,可以减小硬件实现面积,并利用插入流水线寄存器的方法,缩短关键路径,提高运算速度.  相似文献   

9.
提出一种基于行的实时、二维提升整数小波变换的VLSI结构。该结构包括行变换器、列变换器、中间缓存器以及输出控制单元。利用中间缓存器暂存行变换的中间结果,由输出控制单元按优先级从高到低的顺序依次输出各级小波系数。由于在硬件实现中采用基于行的提升变换结构,从而水平和垂直方向上的变换能并行处理。与现有结构相比,该结构具有并行度高、存储量低的特点,并且能够在一幅图像逐行扫描的时间间隔内完成整幅图像的多级小波变换。  相似文献   

10.
提升结构(Lifting Scheme)是一种新的双正交小波变换构造方法.这种方法使得计算复杂度大大降低,有效地减少了运行时间.介绍了基于FPGA的高速9/7提升小波变换的设计,提出采用多级流水线硬件结构实现一维离散小波变换(1-D DWT).该结构使系统吞吐量提高到原来的3倍,面积仅增加40%.在实现二维离散小波变换(2-D DWT)时采用基于行的结构,可以提高片内资源利用率和运行速度,满足小波变换实时性的要求.  相似文献   

11.
杨维  林椹尠  宋国乡 《电子科技》2004,(1):43-46,50
文中引入了一种对信号递归滤波的提升方法,该方法与通常的提升方法不同之处是使用IIR滤波器.探讨了空间域中基于离散插值样条的预测算子和更新算子的设计.提出的方法以插值为基础,只涉及信号的采样,不要求使用正交公式,更适合信号的处理.最后由数值仿真验证了该算法的性能,对于软阈值法小波系数去噪,提升小波变换T12同B9/7相比,前者略优于后者,提升方法的优点在于其设计上的灵活性和计算花费少.  相似文献   

12.
Based on B-spline factorization, a new category of architectures for Discrete Wavelet Transform (DWT) is proposed in this paper. The B-spline factorization mainly consists of the B-spline part and the distributed part. The former is proposed to be constructed by use of the direct implementation or Pascal implementation. And the latter is the part introducing multipliers and can be implemented with the Type-I or Type-II polyphase decomposition. Since the degree of the distributed part is usually designed as small as possible, the proposed architectures could use fewer multipliers than previous arts, but more adders would be required. However, many adders can be implemented with smaller area and lower speed because only few adders are on the critical path. Three case studies, including the JPEG2000 default (9, 7) filter, the (6, 10) filter, and the (10, 18) filter, are given to demonstrate the efficiency of the proposed architectures.Chao-Tsung Huang was born in Kaohsiung, Taiwan, R.O.C., in 1979. He received the B.S. degree from the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., in 2001. He currently is working toward the Ph.D. degree at the Graduate Institute of Electronics Engineering, National Taiwan University. His major research interests include VLSI design and implementation for signal processing systems.Po-Chih Tseng was born in Tao-Yuan, Taiwan in 1977. He received the B.S. degree in Electrical and Control Engineering from National Chiao Tung University in 1999 and the M.S. degree in Electrical Engineering from National Taiwan University in 2001. He currently is pursuing the Ph.D. degree at the Graduate Institute of Electronics Engineering, Department of Electrical Engineering, National Taiwan University. His research interests include VLSI design and implementation for signal processing systems, energy-efficient reconfigurable computing for multimedia systems, and power-aware image and video coding systems.Liang-Gee Chen received the B.S., M.S., and Ph.D. degrees in electrical engineering from National Cheng Kung University, Tainan, Taiwan, R.O.C., in 1979, 1981, and 1986, respectively.In 1988, he joined the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C. During 1993–1994, he was a Visiting Consultant in the DSP Research Department, AT&T Bell Labs, Murray Hill, NJ. In 1997, he was a Visiting Scholar of the Department of Electrical Engineering, University of Washington, Seattle. Currently, he is Professor at National Taiwan University, Taipei, Taiwan, R.O.C. His current research interests are DSP architecture design, video processor design, and video coding systems.Dr. Chen has served as an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY since 1996, as Associate Editor of the IEEE TRANSACTIONS ON VLSI SYSTEMS since 1999, and as Associate Editor of IEEE TRANSACTIONS CIRCUITS AND SYSTEMS II since 2000. He has been the Associate Editor of the Journal of Circuits, Systems, and Signal Processing since 1999, and a Guest Editor for the Journal of Video Signal Processing Systems. He is also the Associate Editor of the PROCEEDINGS OF THE IEEE. He was the General Chairman of the 7th VLSI Design/CAD Symposium in 1995 and of the 1999 IEEE Workshop on Signal Processing Systems: Design and Implementation. He is the Past-Chair of Taipei Chapter of IEEE Circuits and Systems (CAS) Society, and is a member of the IEEE CAS Technical Committee of VLSI Systems and Applications, the Technical Committee of Visual Signal Processing and Communications, and the IEEE Signal Processing Technical Committee of Design and Implementation of SP Systems. He is the Chair-Elect of the IEEE CAS Technical Committee on Multimedia Systems and Applications, During 2001-2002, he served as a Distinguished Lecturer of the IEEE CAS Society. He received the Best Paper Award from the R.O.C. Computer Society in 1990 and 1994. Annually from 1991 to 1999, he received Long-Term (Acer) Paper Awards. In 1992, he received the Best Paper Award of the 1992 Asia-Pacific Conference on circuits and systems in the VLSI design track. In 1993, he received the Annual Paper Award of the Chinese Engineer Society. In 1996 and 2000, he received the Outstanding Research Award from the National Science Council, and in 2000, the Dragon Excellence Award from Acer. He is a member of Phi Tan Phi.  相似文献   

13.
JPEG2000的53小波提升方法的DSP的并行实现   总被引:1,自引:0,他引:1  
提出了两种不同的,基于DSP芯片TMS320VC5502的,具有并行运算特点的5/3小波提升方法的硬件实现方案;并且分析了两种方案的效率差异。实验证实,两种方案均明显缩短了对图像数据进行离散小波变换的时间。  相似文献   

14.
In this paper, a VLSI architecture for lifting-based shape-adaptive discrete wavelet transform (SA-DWT) with odd-symmetric filters is proposed. The proposed architecture is comprised of a stage-based boundary extension strategy and the shape-adaptive boundary handling units. The former could reduce the complexity of multiplexers that are introduced to solve the shape-adaptive boundary extension. The latter consists of two multiplexers and can solve the shape-adaptive boundary extension locally without any additional register. Two case studies are presented, including the JPEG 2000 default (9, 7) filter and MPEG-4 default (9, 3) filter. According to comparison results with previous architectures, the efficiency of the proposed architectures is proven.Chao-Tsung Huang was born in Kaohsiung, Taiwan in 1979. He received the B.S. degree from the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan in 2001. He is currently working toward the Ph.D. degree at the Graduate Institute of Electronics Engineering, National Taiwan University. His major research interests include VLSI design and implementation for 1-D, 2-D, and 3-D Discrete Wavelet Transform. cthuang@video.ee.ntu.edu.twPo-Chih Tseng was born in Tao-Yuan, Taiwan in 1977. He received the B.S. degree in Electrical and Control Engineering from National Chiao Tung University in 1999 and the M.S. degree in Electrical Engineering from National Taiwan University in 2001. He currently is pursuing the Ph.D. degree at the Graduate Institute of Electronics Engineering, Department of Electrical Engineering, National Taiwan University. His research interests include VLSI design and implementation for signal processing systems, energy-efficient reconfigurable computing for multimedia systems, and power-aware image and video coding systems. pctseng@video.ee.ntu.edu.twLiang-Gee Chen (S84–M86–SM94–F01) received the B.S., M.S., and Ph.D. degrees in electrical engineering from National Cheng Kung University, Tainan, Taiwan, R.O.C., in 1979, 1981, and 1986, respectively.In 1988, he joined the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C. During 1993–1994, he was a Visiting Consultant in the DSP Research Department, AT&T Bell Labs, Murray Hill, NJ. In 1997, he was a Visiting Scholar of the Department of Electrical Engineering, University of Washington, Seattle. Currently, he is Professor at National Taiwan University, Taipei, Taiwan, R.O.C. His current research interests are DSP architecture design, video processor design, and video coding systems.Dr. Chen has served as an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY since 1996, as Associate Editor of the IEEE TRANSACTIONS ON VLSI SYSTEMS since 1999, and as Associate Editor of IEEE TRANSACTIONS CIRCUITS AND SYSTEMS II since 2000. He has been the Associate Editor of the Journal of Circuits, Systems, and Signal Processing since 1999, and a Guest Editor for the Journal of Video Signal Processing Systems. He is also the Associate Editor of the PROCEEDINGS OF THE IEEE. He was the General Chairman of the 7th VLSI Design/CAD Symposium in 1995 and of the 1999 IEEE Workshop on Signal Processing Systems: Design and Implementation. He is the Past-Chair of Taipei Chapter of IEEE Circuits and Systems (CAS) Society, and is a member of the IEEE CAS Technical Committee of VLSI Systems and Applications, the Technical Committee of Visual Signal Processing and Communications, and the IEEE Signal Processing Technical Committee of Design and Implementation of SP Systems. He is the Chair-Elect of the IEEE CAS Technical Committee on Multimedia Systems and Applications. During 2001–2002, he served as a Distinguished Lecturer of the IEEE CAS Society. He received the Best Paper Award from the R.O.C. Computer Society in 1990 and 1994. Annually from 1991 to 1999, he received Long-Term (Acer) Paper Awards. In 1992, he received the Best Paper Award of the 1992 Asia-Pacific Conference on circuits and systems in the VLSI design track. In 1993, he received the Annual Paper Award of the Chinese Engineer Society. In 1996 and 2000, he received the Outstanding Research Award from the National Science Council, and in 2000, the Dragon Excellence Award from Acer. He is a member of Phi Tan Phi. lgchen@video.ee.ntu.edu.tw  相似文献   

15.
In this paper, a novel reconfigurable discrete wavelet transform processor architecture is proposed to meet the diverse computing requirements of future generation multimedia SoC. The proposed architecture mainly consists of reconfigurable processing element array and reconfigurable address generator, featuring dynamically reconfigurable capability where the wavelet filters and wavelet decomposition structures can be reconfigured as desired at run-time. The lifting-based reconfigurable processing element array possesses better computation efficiency than convolution-based architectures, and a systematic design method is provided to generate the hardware configurations of different wavelet filters for it. The reconfigurable address generator handles flexible address generation for data I/O access in different wavelet decomposition structures. A prototyping chip has been fabricated by TSMC 0.35 μm 1P4M CMOS process. At 50 MHz, this chip can achieve at most 100 M pixels/sec transform throughput, together with energy efficiency and unique reconfigurability features, proving it to be a universal and extremely flexible computing engine for heterogeneous reconfigurable multimedia systems.Po-Chih Tseng was born in Tao-Yuan, Taiwan in 1977. He received the B.S. degree in Electrical and Control Engineering from National Chiao Tung University in 1999 and the M.S. degree in Electrical Engineering from National Taiwan University in 2001. He currently is pursuing the Ph.D. degree at the Graduate Institute of Electronics Engineering, Department of Electrical Engineering, National Taiwan University. His research interests include VLSI design and implementation for signal processing systems, energy-efficient reconfigurable computing for multimedia systems, and power-aware image and video coding systems.Chao-Tsung Huang was born in Kaohsiung, Taiwan, R.O.C., in 1979. He received the B.S. degree from the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C., in 2001. He currently is working toward the Ph.D. degree at the Graduate Institute of Electronics Engineering, National Taiwan University. His major research interests include VLSI design and implementation for signal processing systems.Liang-Gee Chen (S’84–M’86–SM’94–F’01) received the B.S., M.S., and Ph.D. degrees in electrical engineering from National Cheng Kung University, Tainan, Taiwan, R.O.C., in 1979, 1981, and 1986, respectively. In 1988, he joined the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C. During 1993–1994, he was a Visiting Consultant in the DSP Research Department, AT&T Bell Labs, Murray Hill, NJ. In 1997, he was a Visiting Scholar of the Department of Electrical Engineering, University of Washington, Seattle. Currently, he is Professor at National Taiwan University, Taipei, Taiwan, R.O.C. His current research interests are DSP architecture design, video processor design, and video coding systems.Dr. Chen has served as an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY since 1996, as Associate Editor of the IEEE TRANSACTIONS ON VLSI SYSTEMS since 1999, and as Associate Editor of IEEE TRANSACTIONS CIRCUITS AND SYSTEMS II since 2000. He has been the Associate Editor of the Journal of Circuits, Systems, and Signal Processing since 1999, and a Guest Editor for the Journal of VLSI Signal Processing Systems. He is also the Associate Editor of the PROCEEDINGS OF THE IEEE. He was the General Chairman of the 7th VLSI Design/CAD Symposium in 1995 and of the 1999 IEEE Workshop on Signal Processing Systems: Design and Implementation. He is the Past-Chair of Taipei Chapter of IEEE Circuits and Systems (CAS) Society, and is a member of the IEEE CAS Technical Committee of VLSI Systems and Applications, the Technical Committee of Visual Signal Processing and Communications, and the IEEE Signal Processing Technical Committee of Design and Implementation of SP Systems. He is the Chair-Elect of the IEEE CAS Technical Committee on Multimedia Systems and Applications. During 2001–2002, he served as a Distinguished Lecturer of the IEEE CAS Society. He received the Best Paper Award from the R.O.C. Computer Society in 1990 and 1994. Annually from 1991 to 1999, he received Long-Term (Acer) Paper Awards. In 1992, he received the Best Paper Award of the 1992 Asia-Pacific Conference on circuits and systems in the VLSI design track. In 1993, he received the Annual Paper Award of the Chinese Engineer Society. In 1996 and 2000, he received the Outstanding Research Award from the National Science Council, and in 2000, the Dragon Excellence Award from Acer. He is a member of Phi Tan Phi.  相似文献   

16.
多级多维离散小波变换的快速提升计算   总被引:4,自引:2,他引:4  
钟广军  成礼智  陈火旺 《电子学报》2001,29(11):1475-1477
提升方法是计算离散小波变换的有效手段,它由一系列的提升步和拉伸变换组成.在计算多级和多维离散小波变换时,现有方法在每一次小波分解的过程中都做完整的提升步计算和拉伸变换计算.我们发现该方法存在运算过程的冗余,为此本文提出了一种称之为后拉伸变换的提升方法,基本思想是计算完所有的提升步后,再统一进行拉伸变换.它能减少离散小波变换的乘法运算量.例如,对图像与视频压缩中应用广泛的Daubechies 9/7小波,做一维5级分解时与现有方法相比,乘法运算减少20%,而二维5级分解时,乘法运算减少28%.  相似文献   

17.
The suitability of the 2D Discrete Wavelet Transform (DWT) as a tool in image and video compression is nowadays indisputable. For the execution of the multilevel 2D DWT, several computation schedules based on different input traversal patterns have been proposed. Among these, the most commonly used in practical designs are: the row–column, the line-based and the block-based. In this work, these schedules are implemented on FPGA-based platforms for the forward 2D DWT by using a lifting-based filter-bank implementation. Our designs were realized in VHDL and optimized in terms of throughput and memory requirements, in accordance with the principles of both the schedules and the lifting decomposition. The implementations are fully parameterized with respect to the size of the input image and the number of decomposition levels. We provide detailed experimental results concerning the throughput, the area, the memory requirements and the energy dissipation, associated with every point of the parameter space. These results demonstrate that the choice of the suitable schedule is a decision that should be dependent on the given algorithmic specifications.
Yiannis AndreopoulosEmail:
  相似文献   

18.
基于离散分数阶正交小波变换图像降噪新方法   总被引:2,自引:0,他引:2       下载免费PDF全文
徐小军  王友仁 《电子学报》2014,42(2):280-287
分数阶小波变换是小波变换时间-频域的分析方法在时间-分数阶频率域的推广,在时间和分数阶频率域具有表征信号特征的能力.本文在离散分数阶正交小波变换(DFRWT)多分辨率分析(MRA)理论基础上,推导出DFRWT系数分解及重构新形式并作二维扩展.根据图像DFRWT子带系数能量随不同阶数p变化的特点,提出基于DFRWT阈值降噪新方法.该方法在保持子带低频能量为绝对大值条件下,适当提高子带高频能量值,更利于抑制图像噪声.实验结果表明,与传统小波阈值降噪方法相比,该方法主观质量得到了明显增强,提高了峰值信噪比.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号